Information Technology Reference
In-Depth Information
residuals. The estimated values are usually called most likelihood parameter
values or the least-squares parameter values .
The maximum likelihood method applied to the ARMA( p , q ) process with the
sampled values arranged as the components of the vector
y and with the
] T
[
yy
,
...,
1 ,
n
non-zero mean µ starts with the extended model
p
q
Y
PD P
(
Y
)
z
E
z
¦
¦
i
i
t
i
t
j
t
j
i
1
j
1
with p+q +2 parameters
, and
A matrix V( Į , ȕ )
DEV
,
2
VAR( )
z
P H
{}.
Y
i
j
,
should now be defined so that the relation
2
VAR( Y ) =
V VDE,
,
holds, where
T
DDDD
[, , ]
12
p
T
EEEE
[ , ,..., ]
[, , ]
[
12
q
yyy y
YYY Y
T
12
n
T
,
,...,
]
12
n
with the elements of V ( Į , ȕ ) being proportional to the autocorrelation coefficients
of { Y }.
Supposing now that i z values are normally distributed, so will Y also be
normally distributed, so that the log-likelihood function will be defined by
1
2
2
T
1
2
L
(, ,, )
PVDE
[log
n
V
log (, ) (
V
D E
y
P
I
)[(, ](
V
D E
y
P V
I
)/
]
2
[1, 1, ..., 1] T
where I is the identity vector
I
.
Given initial values of Į and ȕ , the maximum estimate of µ and
V are
PDE
ˆ (, ) { [(, )] }/{ [(, ] }
1
IV
T
DE
1
y IV
T
DE
1
I
2
ˆ
T
1
ˆ
VDE
(, )
[
y
PDE
(, )]/{[(, ][
I
V
DE
y
PDE
(, )]
I
n
This, after substituting in the above likelihood equation, gives
1
2
L
(, )
DE
[log
n
VDE
(, ) log (, ]
V
DE
.
0
2
 
Search WWH ::




Custom Search