Chemistry Reference
In-Depth Information
If all orientations were equally probable, then the average potential
energy h V i , and hence the average first-order electrostatic h C 3 i coefficient
(Magnasco et al., 1988; Magnasco, 2007), would be zero. In fact:
R 3 Ð W d
W F ðWÞ
Ð W
h V i W ¼ m A m B
¼ 0
ð 11
:
66 Þ
d
W
since
ð
ð
ð p
A ð p
0
ð
dx A ð
2
1
1
p
d
W ¼
d
w
d
u
A sin
u
d
u
B sin
u
¼ 2
dx B ¼ 8
p
p
B
W
0
0
1
1
ð 11
:
67 Þ
where
x A ¼ cos
u
;
x B ¼ cos
u
ð 11
:
68 Þ
A
B
2
3
0
1
2
2
ð
ð
ð
2 ð
ð
2
p
1
2
p
1
4
1
=
2
5
@
A
dx ð 1 x 2
d
W F ðWÞ¼
d
w
cos
w
Þ
d
w
dxx
¼ 0
W
0
1
0
1
ð 11
:
69 Þ
The vanishing of the average potential energy for free orientations is
true for all multipoles (dipoles, quadrupoles, octupoles, hexadecapoles,
etc.).
The Boltzmann probability for a dipole arrangement whose potential
energy is V is instead proportional to
W / exp ð V = kT Þ
ð 11
:
70 Þ
We now average the quantity Vexp ð V = kT Þ over all possible orienta-
tions
W
assumed by the dipoles:
R 3 Ð W
h Vexp ð V = kT Þi ¼ m A m B
W F ðWÞ exp ½ aF ðWÞ
Ð W
d
ð 11
:
71 Þ
d
W
exp ½ aF ðWÞ
Search WWH ::




Custom Search