Biology Reference
In-Depth Information
28. McManus KJ, Hendzel MJ. Quantitative analysis of CBP- and P300-induced histone
acetylations in vivo using native chromatin. Mol Cell Biol . 2003;23(21):7611-7627.
29. Wang Z, Zang C, Cui K, et al. Genome-wide mapping of HATs and HDACs reveals
distinct functions in active and inactive genes. Cell . 2009;138(5):1019-1031.
30. Etchegaray JP, Lee C, Wade PA, Reppert SM. Rhythmic histone acetylation underlies
transcription in the mammalian circadian clock. Nature . 2003;421(6919):177-182.
31. Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance.
Annu Rev Pathol . 2010;5:253-295.
32. Landry J, Sutton A, Tafrov ST, et al. The silencing protein SIR2 and its homologs are
NAD-dependent protein deacetylases. Proc Natl Acad Sci USA . 2000;97(11):5807-5811.
33. Lin SJ, Kaeberlein M, Andalis AA, et al. Calorie restriction extends Saccharomyces
cerevisiae lifespan by increasing respiration. Nature . 2002;418(6895):344-348.
34. Burnett C, Valentini S, Cabreiro F, et al. Absence of effects of Sir2 overexpression on
lifespan in C. elegans and Drosophila. Nature . 2011;477(7365):482-485.
35. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control
of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature . 2005;434
(7029):113-118.
36. Belden WJ, Dunlap JC. SIRT1 is a circadian deacetylase for core clock components.
Cell . 2008;134(2):212-214.
37. Nakahata Y, Kaluzova M, Grimaldi B, et al. The NAD þ -dependent deacetylase SIRT1
modulates CLOCK-mediated chromatin remodeling and circadian control. Cell .
2008;134(2):329-340.
38. Asher G, Gatfield D, Stratmann M, et al. SIRT1 regulates circadian clock gene expres-
sion through PER2 deacetylation. Cell . 2008;134(2):317-328.
39. Prozorovski T, Schulze-Topphoff U, Glumm R, et al. Sirt1 contributes critically to the
redox-dependent fate of neural progenitors. Nat Cell Biol . 2008;10(4):385-394.
40. Bellet MM, Sassone-Corsi P. Mammalian circadian clock and metabolism—the epige-
netic link. J Cell Sci . 2010;123(Pt 22):3837-3848.
41. Zhang J, Kalkum M, Chait BT, Roeder RG. The N-CoR-HDAC3 nuclear receptor
corepressor complex inhibits the JNK pathway through the integral subunit GPS2. Mol
Cell . 2002;9(3):611-623.
42. Alenghat T, Meyers K, Mullican SE, et al. Nuclear receptor corepressor and histone
deacetylase 3 govern circadian metabolic physiology. Nature . 2008;456(7224):997-1000.
43. Valekunja UK, Edgar RS, Oklejewicz M, et al. Histone methyltransferase MLL3 con-
tributes to genome-scale circadian transcription. Proc Natl Acad Sci USA . 2012;110
(4):1554-1559.
44. Malapeira J, Khaitova LC, Mas P. Ordered changes in histone modifications at the core
of the Arabidopsis circadian clock. Proc Natl Acad Sci USA . 2012;109(52):21540-21545.
45. Lu SX, Tobin EM. Chromatin remodeling and the circadian clock: Jumonji C-domain
containing proteins. Plant Signal Behav . 2011;6(6):810-814.
46. Jones MA, Covington MF, DiTacchio L, Vollmers C, Panda S, Harmer SL. Jumonji
domain protein JMJD5 functions in both the plant and human circadian systems. Proc
Natl Acad Sci USA . 2010;107(50):21623-21628.
47. Raduwan H, Isola AL, Belden WJ. Methylation of histone H3 on lysine 4 by the lysine
methyltransferase SET1 protein is needed for normal clock gene expression. J Biol Chem .
2013;288(12):8380-8390.
48. Schibler U, Sassone-Corsi P. A web of circadian pacemakers. Cell . 2002;111(7):919-922.
49. Stephan FK, Swann JM, Sisk CL. Anticipation of 24-hr feeding schedules in rats with
lesions of the suprachiasmatic nucleus. Behav Neural Biol . 1979;25(3):346-363.
50. Hannibal J, Ding JM, Chen D, et al. Pituitary adenylate cyclase activating peptide
(PACAP) in the retinohypothalamic tract: a daytime regulator of the biological clock.
Ann N Y Acad Sci . 1998;865:197-206.
 
Search WWH ::




Custom Search