Biology Reference
In-Depth Information
104. Johnson RF, Moore RY, Morin LP. Loss of entrainment and anatomical plasticity after
lesions of the hamster retinohypothalamic tract. Brain Res . 1988;460:297-313.
105. Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD. Melanopsin: an opsin in
melanophores, brain, and eye. Proc Natl Acad Sci USA . 1998;95:340-345.
106. Lucas RJ, Freedman MS, Lupi D, Munoz M, David-Gray ZK, Foster RG. Identifying
the photoreceptive inputs to the mammalian circadian system using transgenic and
retinally degenerate mice. Behav Brain Res . 2001;125:97-102.
107. G¨ ler AD, Ecker JL, Lall GS, et al. Melanopsin cells are the principal conduits for rod-
cone input to non-image-forming vision. Nature . 2008;453:102-105.
108. Hattar S, Lucas RJ, Mrosovsky N, et al. Melanopsin and rod-cone photoreceptive sys-
tems account for all major accessory visual functions in mice. Nature . 2003;424: 76-81.
109. Lall GS, Revell VL, Momiji H, et al. Distinct contributions of rod, cone, and
melanopsin photoreceptors to encoding irradiance. Neuron . 2010;66:417-428.
110. Lucas RJ, Lall GS, Allen AE, Brown TM. How rod, cone, and melanopsin photore-
ceptors come together to enlighten the mammalian circadian clock. Prog Brain Res .
2012;199:1-18.
111. Hattar S, Kumar M, Park A, et al. Central projections of melanopsin-expressing retinal
ganglion cells in the mouse. J Comp Neurol . 2006;497:326-349.
112. Johnson RF, Morin LP, Moore RY. Retinohypothalamic projections in the hamster
and rat demonstrated using cholera toxin. Brain Res . 1988;462:301-312.
113. Moore RY, Halaris AE, Jones BE. Serotonin neurons of the midbrain raphe: ascending
projections. J Comp Neurol . 1978;180:417-438.
114. Morin LP, Meyer-Bernstein EL. The ascending serotonergic system in the hamster:
comparison with projections of the dorsal and median raphe nuclei. Neuroscience .
1999;91:81-105.
115. Krieg WJS. The hypothalamus of the albino rat. J Comp Neurol . 1932;55:19-89.
116. Stephan FK, Berkley KJ, Moss RL. Efferent connections of the rat suprachiasmatic
nucleus. Neuroscience . 1981;6:2625-2641.
117. Kriegsfeld LJ, Leak RK, Yackulic CB, LeSauter J, Silver R. Organization of sup-
rachiasmatic nucleus projections in Syrian hamsters ( Mesocricetus auratus ): an anterograde
and retrograde analysis. J Comp Neurol . 2004;468:361-379.
118. Watts AG, Swanson LW, Sanchez-Watts G. Efferent projections of the suprachiasmatic
nucleus: I. Studies using anterograde transport of Phaseolus vulgaris
leucoagglutinin in
the rat. J Comp Neurol . 1987;258:204-229.
119. Watts AG, Swanson LW. Efferent projections of the suprachiasmatic nucleus: II. Stud-
ies using retrograde transport of fluorescent dyes and simultaneous peptide immunohis-
tochemistry in the rat. J Comp Neurol . 1987;258:230-252.
120. Negri L, Lattanzi R, Giannini E, Melchiorri P. Bv8/Prokineticin proteins and their
receptors. Life Sci . 2007;81:1103-1116.
121. Zhou QY, Cheng MY. Prokineticin 2 and circadian clock output.
FEBS J .
2005;272:5703-5709.
122. Zhang C, Truong KK, Zhou QY. Efferent projections of prokineticin 2 expressing
neurons in the mouse suprachiasmatic nucleus. PLoS One . 2009;4:e7151.
123. Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mam-
mals. Annu Rev Neurosci . 2012;35:445-462.
124. Beaule C, Granados-Fuentes D, Marpegan L, Herzog E. In vitro circadian rhythms:
imaging and electrophysiology. Essays Biochem . 2011;49:103-117.
125. Friston KJ. Modalities, modes, and models in functional neuroimaging.
Science .
2009;326:399-403.
126. Ross ED. Cerebral localization of functions and the neurology of language: fact versus
fiction or is it something else? Neuroscientist . 2010;16:222-243.
 
 
Search WWH ::




Custom Search