Biology Reference
In-Depth Information
125. Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP.
Early aging and age-related pathologies in mice deficient in BMAL1, the core compo-
nent of the circadian clock. Genes Dev . 2006;20(14):1868-1873.
126. Matsuo T, Yamaguchi S, Mitsui S, Emi A, Shimoda F, Okamura H. Control mecha-
nism of the circadian clock for timing of cell division in vivo. Science . 2003;302
(5643):255-259.
127. Ozturk N, Lee JH, Gaddameedhi S, Sancar A. Loss of cryptochrome reduces cancer risk
in p53 mutant mice. Proc Natl Acad Sci USA . 2009;106(8):2841-2846.
128. Gauger MA, Sancar A. Cryptochrome, circadian cycle, cell cycle checkpoints, and can-
cer. Cancer Res . 2005;65(15):6828-6834.
129. Antoch MP, Gorbacheva VY, Vykhovanets O, et al. Disruption of the circadian clock
due to the Clock mutation has discrete effects on aging and carcinogenesis. Cell Cycle .
2008;7(9):1197-1204.
130. Barbeito CG, Garcia MN, Flamini MA, Andrini LB, Badran AF. Effect of partial and
sham hepatectomy on the growth of a hepatocellular carcinoma. J Exp Clin Cancer Res .
2001;20(1):153-158.
131. Huang W, Ma K, Zhang J, et al. Nuclear receptor-dependent bile acid signaling is
required for normal liver regeneration. Science . 2006;312(5771):233-236.
132. Yang F, Huang X, Yi T, Yen Y, Moore DD, Huang W. Spontaneous development of
liver tumors in the absence of the bile acid receptor farnesoid X receptor. Cancer Res .
2007;67(3):863-867.
133. Doi M, Hirayama J, Sassone-Corsi P. Circadian regulator CLOCK is a histone
acetyltransferase. Cell . 2006;125(3):497-508.
134. Tsuchiya Y, Minami I, Kadotani H, Todo T, Nishida E. Circadian clock-controlled
diurnal oscillation of Ras/ERK signaling in mouse liver. Proc Jpn Acad Ser B Phys Biol
Sci . 2013;89(1):59-65.
135. Oster H, van der Horst GT, Albrecht U. Daily variation of clock output gene activation
in behaviorally arrhythmic mPer/mCry triple mutant mice. Chronobiol Int . 2003;20
(4):683-695.
136. Hoshino R, Chatani Y, Yamori T, et al. Constitutive activation of the 41-/43-kDa
mitogen-activated protein kinase signaling pathway in human tumors. Oncogene .
1999;18(3):813-822.
137. Zou Y, Bao Q, Kumar S, Hu M, Wang GY, Dai G. Four waves of hepatocyte prolif-
eration linked with three waves of hepatic fat accumulation during partial
hepatectomy-induced liver regeneration. PLoS One . 2012;7(2):e30675.
138. Lawler J, Miao WM, Duquette M, Bouck N, Bronson RT, Hynes RO.
Thrombospondin-1 gene expression affects survival and tumor spectrum of p53-
deficient mice. Am J Pathol . 2001;159(5):1949-1956.
139. Yamamoto M, Tsukamoto T, Sakai H, et al. p53 knockout mice ( / ) are more sus-
ceptible than ( þ / )or( þ / þ ) mice to N-methyl-N-nitrosourea stomach carcinogen-
esis. Carcinogenesis . 2000;21(10):1891-1897.
140. Tyner SD, Venkatachalam S, Choi J, et al. p53 mutant mice that display early ageing-
associated phenotypes. Nature . 2002;415(6867):45-53.
141. Oda H, Zhang S, Tsurutani N, et al. Loss of p53 is an early event in induction of brain
tumors
in mice by transplacental carcinogen exposure.
Cancer Res . 1997;57
(4):646-650.
142. Hursting SD, Perkins SN, Phang JM. Calorie restriction delays spontaneous tumorigen-
esis in p53-knockout transgenic mice. Proc Natl Acad Sci USA . 1994;91(15):7036-7040.
143. Nozawa H, Oda E, Nakao K, et al. Loss of transcription factor IRF-1 affects tumor
susceptibility in mice carrying the Ha-ras transgene or nullizygosity for p53. Genes
Dev . 1999;13(10):1240-1245.
 
 
Search WWH ::




Custom Search