Biology Reference
In-Depth Information
67. Haxhiu MA, Yung K, Erokwu B, Cherniack NS. CO2-induced c-fos expression in the
CNS catecholaminergic neurons. Respir Physiol . 1996;105:35-45.
68. Filosa JA, Dean JB, Putnam RW. Role of intracellular and extracellular pH in the
chemosensitive response of rat locus coeruleus neurones. J Physiol . 2002;541:493-509.
69. Johnson SM, Haxhiu MA, Richerson GB. GFP expressing locus coeruleus neurons
from Prp57 transgenic mice exhibit CO2/H รพ responses in primary cell culture.
J Appl Physiol . 2008;105:1301-1311.
70. Miles R. Does low pH stimulate central chemoreceptors located near the ventral med-
ullary surface? Brain Res . 1983;271:349-353.
71. Guyenet PG, Stornetta RL, Bayliss DA. Retrotrapezoid nucleus and central chemore-
ception. J Physiol . 2008;586:2043-2048.
72. Mulkey DK, Rosin DL, West G, et al. Serotonergic neurons activate chemosensitive
retrotrapezoid nucleus neurons by a pH-independent mechanism.
J Neurosci .
2007;27:14128-14138.
73. Hodges MR, Richerson GB. Contributions of 5-HT neurons to respiratory control:
neuromodulatory and trophic effects. Respir Physiol Neurobiol . 2008;164:222-232.
74. Guyenet PG. The 2008 Carl Ludwig Lecture: retrotrapezoid nucleus, CO2 homeosta-
sis and breathing automaticity. J Appl Physiol . 2008;105:404-416.
75. Cross BA, Silver IA. Unit activity in the hypothalamus and the sympathetic response to
hypoxia and hypercapnia. Exp Neurol . 1963;7:375-393.
76. Dillon GH, Waldrop TG. Responses of feline caudal hypothalamic cardiorespiratory
neurons to hypoxia and hypercapnia. Exp Brain Res . 1993;96:260-272.
77. Nakamura A, Zhang W, Yanagisawa M, Fukuda Y, Kuwaki T. Vigilance state-
dependent attenuation of hypercapnic chemoreflex and exaggerated sleep apnea in
orexin knockout mice. J Appl Physiol . 2007;102:241-248.
78. Kuwaki T, Zhang W, Nakamura A, Deng BS. Emotional and state-dependent mod-
ification of cardiorespiratory function: role of orexinergic neurons. Auton Neurosci .
2008;142:11-16.
79. Feldman JL, Mitchell GS, Nattie EE. Breathing:
rhythmicity,
plasticity,
chemosensitivity. Annu Rev Neurosci . 2003;26:239-266.
80. Kuwaki T, Li A, Nattie E. State-dependent central chemoreception: a role of orexin.
Respir Physiol Neurobiol . 2010;173:223-229.
81. Campbell EJ, Freedman S, Smith PS, Taylor ME. The ability of man to detect added
elastic loads to breathing. Clin Sci . 1961;20:223-231.
82. O'Donnell DE, Hamilton AL, Webb KA. Sensory-mechanical relationships during
high-intensity,
constant-work-rate
exercise
in COPD.
J Appl
Physiol .
2006;101:1025-1035.
83. Takahashi JS, Hong HK, Ko CH, McDearmon EL. The genetics of mammalian
circadian order and disorder: implications for physiology and disease. Nat Rev Genet .
2008;9:764-775.
84. Moore RY, Eichler VB. Loss of a circadian adrenal corticosterone rhythm following
suprachiasmatic lesions in the rat. Brain Res . 1972;42:201-206.
85. Stephan FK, Zucker I. Circadian rhythms in drinking behavior and locomotor activity
of
rats
are eliminated by hypothalamic lesions.
Proc Natl Acad Sci USA .
1972;69:1583-1586.
86. Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mam-
mals. Annu Rev Neurosci . 2012;35:445-462.
87. Mortola JP. Breathing around the clock: an overview of the circadian pattern of res-
piration. Eur J Appl Physiol . 2004;91:119-129.
88. Spengler CM, Shea SA. Endogenous circadian rhythm of pulmonary function in
healthy humans. Am J Respir Crit Care Med . 2000;162:1038-1046.
 
 
 
 
 
Search WWH ::




Custom Search