Geoscience Reference
In-Depth Information
j y =
σ H E x sin I + σ P E y + σ H E z cos I,
(2.5)
j z =( σ
σ H E y cos I
+( σ sin 2 I + σ P cos 2 I ) E z .
σ P ) E x cos I sin I
(2.6)
Suppose the ionosphere is an anisotropic sheet with non-conductive upper and
lower boundaries. Then vanishing of the vertical component of the current j z
enables us to find E z from (2.6) in the form
E z = ( σ P
σ ) E x cos I sin I + σ H E y cos I
σ sin 2 I + σ P cos 2 I
.
(2.7)
Substitution of ( 2.7) into (2.4) and (2.6) yields [5]:
j x = σ xx E x + σ xy E y ,
j y =
σ xy E x + σ yy E y ,
with components of the so-called 'layered conductivity'
σ σ P
σ sin 2 I + σ P cos 2 I ,
σ xx =
σ σ H sin I
σ sin 2 I + σ P cos 2 I
σ xy =
=
σ yx ,
σ yy = σ P σ sin 2 I +( σ P + σ 2 H )cos 2 I
σ sin 2 I + σ P cos 2 I
.
(2.8)
These formulae are valid just for large-scale low frequency fields. Since
σ
σ P H the field-lines can be considered equipotential for the ULF
large-scale perturbations, i.e. the E x and E y electric components are height-
independent. Integration the equations for the currents j x ,j y over height gives
J x = Σ xx E x + Σ xy E y ,
J y =
Σ xy E x + Σ yy E y ,
where
Σ xx = σ xx dz,
Σ xy = σ xy dz,
Σ yy = σ yy dz
(2.9)
are the height integrated conductivities and
J x = j x dz,
J y = j y dz
are components of the surface ionospheric current.
 
Search WWH ::




Custom Search