Geoscience Reference
In-Depth Information
(1.77) reduce to
ω pe
4 π∆ ±
ω pe
4 π∆
σ ( ± )
e
= i
( ω
ω ci + in ) ,
e = i
( ω + in ) ,
(1.82)
ω pi
4 π∆ ±
ω pi
4 π∆
σ ( ± )
i
= i
( ω
±
ω ce + en ) ,
i = i
( ω + en ) .
(1.83)
These equations allow considerable further simplification. ν ei ν ie = ν ei m e /m i
can be omitted in ± if ν in >> ν ei m e /m i . This inequality holds throughout
the ionosphere, except the upper part of the F -layer. Then
± =( ω
±
ω ce + e )( ω
ω ci + i ) ,
=( ω + e )( ω + i ) ,
and (1.82)-(1.83) become
ω pe
ω pe
4 π ( ω + e ) ,
σ ( ± )
e
= i
ω ce + e ) ,
e = i
(1.84)
4 π ( ω
±
ω pi
ω pi
4 π ( ω + i ) .
σ ( ± )
i
= i
ω ci + i ) ,
i = i
(1.85)
4 π ( ω
By substituting (1.84), (1.85) into (1.71), (1.72), we obtain
X e
1+ X e
,
σ xx = c Ne
B 0
X i
1+ X i
+
(1.86)
1
1+ X i
,
σ xy = c Ne
B 0
1
1+ X e
(1.87)
1
X e +
.
σ = c Ne
B 0
1
X i
(1.88)
where
X e = ν e
ω ce
X i = ν i
ω ci
,
.
The tensor of dielectric permeability ε ( r ) could be obtained easily from
(1.56).
Ultra Low Frequency Range
Consider Ultra Low Frequency (ULF) range holding the inequality
ν n
ω
ω ci
ω ce .
(1.89)
Expand the conductivities (1.86)-(1.88) into the power series over ω/ω ce and
ω/ω ci . First we present the following approximate equations
Search WWH ::




Custom Search