Geoscience Reference
In-Depth Information
Hence
ω
ω + n in ,
i eE ( ± )
m e ±
ω
v ( ± )
e
=
ω ci +
(1.67)
ω
ω + n en ,
= i eE ( ± )
m i ±
ω
v ( ± )
i
±
ω ce +
(1.68)
where
± =[ ω
±
ω ce + i ( ν e
en ][ ω
ω ci + i ( ν i
in )]
+( ν ei + en )( ν ie + in ) .
The magnetic field has no effect on the velocity and current components along
B 0 . Therefore, in order to find longitudinal velocities, one can put ω ce = ω ci =
0 , then
ω +
ω + n in ,
eE
m e
ω
v e =
i
(1.69)
ω +
ω + n en ,
eE
m i
ω
v i = i
(1.70)
where
=[ ω + i ( ν e
en )][ ω + i ( ν i
in )] + ( ν ei + en )( ν ie + in ) .
The electron and ion current densities and corresponding conductivities in the
basis of circle polarizations are
e = j ez and j ( ± )
j ( ± )
e
= j ex ±
ij ey ,
= j ix ±
ij iy ,
i = j iz ,
i
σ ( ± )
i
σ ( ± )
e
= σ exx
exy ,
e = σ ez
and
= σ ixx
ixy ,
i = σ iz ,
and
σ (+)
e
,
σ (+)
i
,
1
2
ixx = 1
2
+ σ ( )
i
+ σ ( )
e
σ exx =
(1.71)
σ (+)
e
,
σ (+)
i
.
i
2
i
2
σ ( )
i
σ ( )
e
σ exy =
ixy =
(1.72)
Here we take into account that σ xx = σ yy xy =
σ yx . The transversal and
longitudinal components of the total conductivity is a sum of the electron and
ion parts:
+ σ ( ± )
i
σ ( ± ) = σ ( ± )
e
,
σ
= σ e + σ i .
(1.73)
Substituting (1.67)-(1.70) into
j ( ± )
e
Nev ( ± )
e
= σ ( ± )
e
E ( ± ) ,
=
e =
Nev e = σ e E ,
(1.74)
j ( ± )
i
= Nev ( ± )
i
= σ ( ± )
i
E ( ± ) ,
j i = Nev i = σ i E .
(1.75)
 
Search WWH ::




Custom Search