Geoscience Reference
In-Depth Information
where
α = sin 2 I
X
Y 2
X∆ (0)
S
γ (0) =
,
.
Let
|
κ a h
|
1. Then
1+ κ a h ε g
ik 0 ε a
ε g ,
ζ (0)
1
ζ 1
=
ζ 2
,
ik 0 h ε g ,
ε g ,
ζ (0)
3
ζ (0)
4
ζ 3
=1
4
=
X + ζ (0)
k 0 ε m ,
ε m
κ (0)
S
(0)
S
4
ζ (0)
3
S
=
.
The approximate expression for κ S is obtained under the assumption that
k (0) / ( k 0 ε m )
1 , where k (0) is determined by (8.39). This inequality holds
at T< 10 4 s. Function
k 2
k (0) .
k 0 ε a |
sin I
|
i∆ (0)
S
( k )= SK ( k ) A ( k )
≈−
k (0) h
near k = k (0)
For the contribution of the electric mode to the ground field, we get
α 2
k 0 ε a
k (0) h∆ (0)
G 0 =
(1
γ (0) ) 2
sin I
S
ε g Y 2
ζ (0 3 (0)
ε g Y
ζ (0)
3
sin I
S
×
.
(8.55)
γ (0) )
γ (0)
α
Y (1
1
(0)
S
sin I
α
If the Hall conductivity is nil ( Y =4 πΣ H /c = 0), then the wave propagates
in the atmospheric waveguide as a TEM-mode ( E z
=0 ,
z =0).Inthe
general case ( Y
= 0), we call it a TEM-type wave, keeping in mind, of course,
that the wave has a longitudinal component b x , as well.
The matrix (8.55) is suciently bulky, therefore, let us take into account
that for a wide range of frequencies and conductivities the ground conductiv-
ity is much more than the ionospheric conductivity, i.e.
|
ε g |
>X
Y and
|
k 0 hX
|
1 . Then (8.55) becomes (see (8.39))
ik 0 h Y 2
X
Y
X
sin I
G 0 exp ik (0) x =
exp ik (0) x .
ik (0)
(8.56)
Y
sin I
ik 0 h
1
 
Search WWH ::




Custom Search