Geoscience Reference
In-Depth Information
The relevant singular solution of system (6.1)-(6.3) occurring as a result of
the summation of series (6.7) is
b ( L )
= P (1)
+ q s ln x P (3)
Q n ( x, z ) .
( x, z )
ns ( x )
P (2)
ns ( x )
P (4)
s
(6.20)
ξ ( L )
xs ( x, z )
ns ( x )
ns ( x )
The set of regular solutions corresponding to columns of the left-hand part
of matrix U ( x ) is (see (6.19))
q m
b ( L m ( x, z )
ξ ( L )
=
P (1)
q s P (1)
nm ( x )
ns ( x )
Q n ( x, z ) ,
m
= s.
(6.21)
q m
P (2)
q s P (2)
nm ( x )
ns ( x )
xm ( x, z )
Regular solutions, obtained from columns of the right-hand part of the matrix
U ,are
b ( R m ( x, z )
ξ ( R )
= P (3)
Q n ( x, z ) ,
nm ( x )
P (4)
m =1 , 2 ,....
(6.22)
xm ( x, z )
nm ( x )
From (6.7) and (6.11) we find the y -component of plasma displacement ξ y ( x, z )
in the form
ik y
Q n b
Q n ( x, z )
ξ y ( x, z )=
,
ω 2
ω n ( x )
where b = b ( L )
m or b = b ( R m .
The behavior of plasma disturbances near a resonance point is determined
by the singular solution (6.20). Using the expressions for Taylor series coef-
ficients of matrix functions P ( x )and P ( x ) T 0 and the decomposition
Q n ( x, z )= Q n ( x 0 ,z )+ Q n ( x 0 ,z )( x
x 0 )+
···
,
with u = x
x 0 , we obtain
Q s +O u 2 +
q s
ω 2 c a ( x 0 )
2 c a ( x 0 )
b ( L )
s
Q s u 2 +O u 3
( x, z )= A s
,
(6.23)
×
ln [ k y u ]
( Q s + R ( z )) u +O u 2 +
q s Q s
1+ k y u 2
4
+O u 3
ξ ( L )
xs
( x, z )= A s
,
(6.24)
×
ln [ k y u ]
q s Q s
ik y u
R ( z )
ik y
+O( u )+
1
2 ik y q s Q s u +O u 2
ξ ( L )
ys ( x, z )= A s
.
(6.25)
×
ln [ k y u ]
 
Search WWH ::




Custom Search