Geoscience Reference
In-Depth Information
5.8 Uncoupled Alfven and FMS-Modes
Alfven Modes
At k y = 0 from (5.62b) for the Alfven waves we obtain
ξ yωn = L 1
ωn f yωn .
Applying to it the inverse Laplace transform, we have
+ + 0
1
2 π
iω ξ yn 0 ( x )
ξ yn 1 ( x )
ξ yn ( x, t )=
exp (
iωt )d ω.
(5.67)
k n ( ω ) c 2 A ( x )
ω 2
−∞
+ 0
Here the integral external currents are omitted and only initial plasma pertur-
bations are left. For t> 0 the integral is along the path Γ (
+ 0 )
(5.67). If we close the integration path by semicircle Γ in the low half-plane
and consider the integral over the contour Γ + Γ , then it can be solved using
the residuum calculus. Tend the semicircle radius to
−∞
+ 0 ,
, then the contribution
on the semicircle Γ vanishes exponentially. The integral is equal to the sum
of residues of the integrand in poles which are determined by zeros of the
denominator of integrand expression (5.67):
ω 2
k n ( ω ) c 2 A ( x )=0 .
(5.68)
A solution of (5.68) at some x has two sets of roots ω ( ± )
( x ) . Then (5.67)
n
reduces to
ξ yn ( x, t )= ξ yn ( x, t )+ ξ yn ( x, t ) ,
( ± )
ξ yn 1 ( x ) c A ( x )exp
( x ) t
( ± )
ξ yn 0 ( x )
n
n
ξ ( ± )
( x ) 1
yn ( x, t )=
i
,
(5.69)
ω = ω ( ± )
n
d k n ( ω )
d ω
2 ω ( ± )
c A ( x )
n
( x )
where ω ( ± n are found in (5.20), (5.25) and k n ( ω ) is obtained from (5.13). For
instance, at Σ P →∞
from (5.15) we find that
ω = ω ( ± )
n
ω A
ω
2
d k n ( ω )
d ω
2 n
π Σ P
1
c A ( x )
( x )
1
i
.
Then Alfven oscillations in the box may be considered as a superposition
of non-interacting damped oscillations. Each elementary oscillation can be
presented as
ξ yn ( x, z, t )= Q n ( z ) u n ( x, t ) ,
with
u n ( x, t )= ξ yn ( x, t )+ ξ yn ( x, t ) .
Search WWH ::




Custom Search