Biomedical Engineering Reference
In-Depth Information
27. i = P(k); slp_mn = abs[slp(i)] % initialization
28. slp_mn = abs[slp(i)] % initialization of minimum average slope
29. if slp (i) [ slp_mn, skip step 30
30. slp_mn = abs[slp(i)], indx = i;
31. i = i ? 1;
32. if i \ P(k) ? 70 skip step 33
33. P_off(k) = indx,
34. k = k ? 1
35. go to step 1 for next P-wave detection
References
1. Rangyyan RM. Biomedical signal anal: a case study approach. Singapore: Wiley; 2002.
2. Huhta JC, Webster JG. 60-Hz interference in electrocardiography. IEEE Tran in Biomed Eng
BME-20. 1973;2:91-101.
3. Webster JG. Reducing motion artifacts and interference in biopotentials recording. IEEE tran
in Biomed Eng BME-31. 1984;12:823-826.
4. Narwaria RP, Verma S, Singhal PK. Removal of baseline wander and power line interference
from ECG signal—a survey approach. Int J Electron Eng. 2011;3(1):107-11.
5. Hirano K, Nishimura S, Mitra SK. Design of digital notch filters. IEEE Tran on Comm COM-
22. 1974;7:964-974.
6. Bailey JJ, Berson AS, Garson A, Horan LG, Macfarlane PW, Mortara DW, Zywietz C.
Recommendations for standardization and specifications in automated electrocardiography:
Bandwidth and digital signal processing. A report for health professionals by ad hoc writing
group of the committee on electrocardiography and cardiac electrophysiology of the council
on clinical cardiology, American heart association. Circulation. 1990;81:730.
7. Thakor NV, Moreau D. Design and analysis of quantized coefficient digital filters: application
to
biomedical
signal
processing
with
microprocessors.
Med
biol
Eng
Comput.
1987;25(1):18-25.
8. Hamilton PS. A comparison of adaptive and nonadaptive filters for reduction of power line
interference in the ECG. IEEE Tran on Biomed Eng. 1996;43(1):105-9.
9. Ahlstrom ML, Tompkins WJ. Digital filters for real-time ECG signal processing using
microprocessors. IEEE Tran on Biomed Eng BME-32. 1985;9:708-713.
10. Pei SC, Tseng CC. Elimination of AC interference in electrocardiogram using IIR notch filter
with transient suppression. IEEE Tran Biomed Eng. 1995;42(11):1128-32.
11. Ider YZ, Koyemen H. A new technique for line interference monitoring and reduction in
biopotential amplifiers. IEEE Tran Biomed Eng. 1990;37(6):624-31.
12. van Alste JA, Schilder TS. Removal of base-line wander and power-line interference from the
ECG by an efficient FIR filter with a reduced number of taps. IEEE Tran Biomed Eng BME-
32. 1985;12:1052-1060.
13. Thakor NV, Zhu YS. Applications of adaptive filtering to ECG analysis: noise cancellation
and arrhythmia detection. IEEE Tran Biomed Eng. 1991;38(8):785-794.
14. Jane R, Laguna P, Thakor NV, Caminal P. Adaptive baseline wander removal in the ECG:
comparative
analysis
with
cubic
spline
technique.
In:
Proceedings
of
computers
in
cardiology, 1992, 11-14 Oct 1992, pp 143-146.
15. Meyera CR, Keiser HN. Electrocardiogram baseline noise estimation and removal using
cubic
splines
and
state-space
computation
techniques.
Comput
Biomed
Res.
1977;10(5):459-70.
Search WWH ::




Custom Search