Cryptography Reference
In-Depth Information
Example 2.15.2 Let N
=
N 1 N 2 N 3 N 4 and suppose one needs to compute
g N 1 N 2 N 3 ,g N 1 N 2 N 4 ,g N 1 N 3 N 4 ,g N 2 N 3 N 4 .
We first compute
g N 3 N 4
g N 1 N 2
h 1 , 1 =
and
h 1 , 2 =
in
2(log 2 ( N 1 N 2 )
+
log 2 ( N 3 N 4 ))
=
2log 2 ( N ) operations. One can then compute the result
g N 1 N 2 N 3
h N 3
1 , 2 ,g N 1 N 2 N 4
h N 4
1 , 2 ,g N 1 N 3 N 4
h N 1
1 , 1 ,g N 2 N 3 N 4
h N 2
=
=
=
=
1 , 1 .
This final step requires at most 2(log 2 ( N 3 )
+
log 2 ( N 4 )
+
log 2 ( N 1 )
+
log 2 ( N 2 ))
=
2log 2 ( N )
operations. The total complexity is at most 4 log 2 ( N ) operations in the group.
The algorithm has a compact recursive description. Let F be the function that on input
( g,m,N 1 ,...,N m ) outputs the list of m values g N/N i for 1
i
m where N
=
N 1 ···
N m .
Then F ( g, 1 ,N 1 )
=
g .For m> 1 one computes F ( g,m,N 1 ,...,N m )asfollows:Let
g N 1 ··· N l and h 2 =
g N l + 1 ··· N m . Then F ( g,m,N 1 ,...,N m ) is equal to
l
=
m/ 2
and let h 1 =
the concatenation of F ( h 1 , ( m
l ) ,N l + 1 ,...,N m ) and F ( h 2 ,l,N 1 ,...,N l ).
We introduce some notation to express the algorithm in a non-recursive format.
1 , 2 ,..., 2 k
2 l define
Definition 2.15.3 Define S
={
}
.For1
l
k and 1
j
1)2 k l
j 2 k l
S l,j ={
i
S :( j
+
1
i
}
.
2 l . The sets S l,j satisfy:
Lemma 2.15.4 Let 1
l
k and 1
j
2 k l ;
1. # S l,j =
j ;
2. S l,j
S l,j = ∅
if j
=
2 l
j
3.
1 S l,j =
S for all 1
l
k;
=
2 l 1
4. If l
2 and 1
j
then S l 1 ,j =
S l, 2 j 1
S l, 2 j ;
2 k .
5. S k,j ={
j
}
for 1
j
Exercise 2.15.5 Prove Lemma 2.15.4 .
2 l define
Definition 2.15.6 For 1
l
k and 1
j
g j S S l,j N i .
h l,j =
2 l then
To compute
{
h k,j :1
j
m
}
efficiently, one notes that if l
2 and 1
j
writing j 1 =
j/ 2
h i S l 1 ,j 1 S l,j N i
l 1 ,j 1
h l,j =
.
This leads to Algorithm 4 .
Search WWH ::




Custom Search