Cryptography Reference
In-Depth Information
x Q ) 2 . One now con-
Hence, x P + Q
x Q =
F x ( Q ) / ( x P
x Q )
+
( y P
y Q ) F y ( Q ) / ( x P
siders two cases: when [2] Q
= O E then F y ( Q )
=
0. When [2] Q
= O E then it is convenient
to consider
x P + Q
x Q +
x P Q
x Q .
Now, x Q =
x Q , y Q =
y Q +
F y ( Q ), F x (
Q )
=
F x ( Q )
a 1 F y ( Q )
and F y (
Q )
=
F y ( Q ). The formula for φ 1 ( x ) follows.
Now we sketch how to obtain the formula for the Y -coordinate of the isogeny in the
case char(
+ Q [ t ( Q ) / ( x
x Q ) 2 ] and so
k
)
=
2. Note that φ 1 ( x )
=
x
x Q )
+
u ( Q ) / ( x
Q [ t ( Q ) / ( x
φ 1 ( x ) =
x Q ) 2
x Q ) 3 ]. Using φ 3 ( x )
1
+
2 u Q / ( x
=
(
A 1 φ 1 ( x )
A 3 +
a 3 ) φ 1 ( x ) ) / 2 one computes
( a 1 x
+
1 ( x ) +
2 ( x )
+
φ 3 ( x )
=
φ 3 ( x )
x Q ) 3
1
x Q ) 2
=
y
t ( Q ) / ( x
+
2 u ( Q ) / ( x
( a 1 x
+
a 3 ) / 2
Q
a 1
Q
x Q ) 2
x Q ) 3 ]
[ t ( Q ) / ( x
+
2 u ( Q ) / ( x
+
( a 1 x
+
a 3 ) / 2
a 3 )
Q
x Q ) 2
x Q ) 3 ]
+
( a 1 x
+
[
t ( Q ) / ( x
2 u ( Q ) / ( x
t ( Q ) y
+
a 1 ( x
x Q )
y Q
u ( Q ) 2 y
+
a 1 x
+
a 3
=
y
+
( x
x Q ) 2
( x
x Q ) 3
Q
.
t ( Q )(( a 1 x Q +
a 3 ) / 2
+
y Q )
+
a 1 u ( Q ) / 2
+
( x
x Q ) 2
It
suffices
to
show
that
the
numerator
of
the
final
term
in
the
sum
is
equal
to
a 1 u ( Q )
F x ( Q ) F y ( Q ). However, this follows easily by noting that ( a 1 x Q +
a 3 ) / 2
+
y Q =
F y ( Q ) 2
F y ( Q ) / 2, u ( Q )
=
and using the facts that F y ( Q )
=
0 when [2] Q
= O E and
=
t ( Q )
2 F x ( Q )
a 1 F y ( Q ) otherwise.
Co r ollary 25.1.7 Let E be an elliptic curve defined over
k
and G a finite subgroup of
. Then there is an elliptic curve E
E (
k
) that is defined over
k
=
E/G defined over
k
and
E defined over
an isogeny φ : E
k
with ker( φ )
=
G.
Proof It suffices to show that the values t ( G ), w ( G ) and the rational functions X and Y in
Theorem 25.1.6 are fixed by any σ
Gal(
k
/
k
).
E be a separable isogeny of odd degree between
Corollary 25.1.8 Let φ : E
elliptic curves over
k
. Write φ ( x,y )
=
( φ 1 ( x ) 2 ( x,y )) , where φ 1 ( x ) and φ 2 ( x,y ) are
u ( x ) /v ( x ) 2 , where deg( u ( x ))
rational functions. Then φ 1 ( x,y )
=
=
and deg( v ( x ))
=
w 2 ( x )) /v ( x ) 3 , where deg( w 1 ( x ))
(
1) / 2 .Also,φ 2 ( x,y )
=
( yw 1 ( x )
+
3(
1) / 2 and
deg( w 2 ( x ))
(3
1) / 2 .
Exercise 25.1.9 Prove Corollary 25.1.8 .
 
Search WWH ::




Custom Search