Cryptography Reference
In-Depth Information
5.7 Weil restriction of scalars
Weil restriction of scalars is simply the process of re-writing a system of polynomial
equations over a finite algebraic extension
k /
k
as a system of equations in more variables
1 (
2 (
over
k
. The canonical example is identifying the complex numbers
A
C
) with
A
R
)
1 (
2 (
via z
). We only need to introduce this concept in the
special case of affine algebraic sets over finite fields.
=
x
+
iy
∈ A
C
)
( x,y )
∈ A
R
Lemma 5.7.1 Let q be a prime power, m
∈ N
and fix a vector space basis
{
θ 1 ,...,θ m }
for
n and let y 1 , 1 ,...,y 1 ,m ,...,y n, 1 ,...,y n,m
F q m over
F q . Let x 1 ,...,x n be coordinates for
A
nm . The map φ :
nm
n given by
be coordinates for
A
A
→ A
φ ( y 1 , 1 ,...,y n,m )
=
( y 1 , 1 θ 1 +···+
y 1 ,m θ m ,y 2 , 1 θ 1 +···+
y 2 ,m θ m ,...,y n, 1 θ 1
+···+
y n,m θ m )
A
nm (
F q ) and
A
n (
F q m ) .
gives a bijection between
Exercise 5.7.2 Prove Lemma 5.7.1 .
n be an affine algebraic set over
Definition 5.7.3 Let X
=
V ( S )
⊆ A
F q m .Let φ be as in
Lemma 5.7.1 . For each polynomial f ( x 1 ,...,x n )
S
⊆ F q m [ x 1 ,...,x n ] write
φ ( f )
=
f
φ
=
f ( y 1 , 1 θ 1 +···+
y 1 ,m θ m ,y 2 , 1 θ 1 +···
+
y 2 ,m θ m ,...,y n, 1 θ 1 +···+
y n,m θ m )
(5.3)
as
f 1 ( y 1 , 1 ,...,y n,m ) θ 1 +
f 2 ( y 1 , 1 ,...,y n,m ) θ 2 +···+
f m ( y 1 , 1 ,...,y n,m ) θ m
(5.4)
where each f j ∈ F q [ y 1 , 1 ,...,y n,m ]. Define S ⊆ F q [ y 1 , 1 ,...,y n,m ] to be the set of all such
polynomials f j over all f
S .The Weil restriction of scalars of X with respect to
F q m /
F q
mn defined by
is the affine algebraic set Y
⊆ A
V ( S ) .
Y
=
F p 2
= F p ( i ) where i 2
=−
Example 5.7.4 Let p
3 (mod 4) and define
1. Consider the
algebraic set X
=
V ( x 1 x 2
1)
⊆ A
2 . The Weil restriction of scalars of X with respect to
F p 2 /
F p with basis
{
1 ,i
}
is
4 .
Y
=
V ( y 1 , 1 y 2 , 1
y 1 , 2 y 2 , 2
1 ,y 1 , 1 y 2 , 2 +
y 1 , 2 y 2 , 1 )
⊆ A
Recall from Example 5.1.4 that X is an algebraic group. The multiplication operation
mult(( x 1 ,x 2 ) , ( x 1 ,x 2 ))
( x 1 x 1 ,x 2 x 2 )on X corresponds to the operation
mult(( y 1 , 1 ,y 1 , 2 ,y 2 , 1 ,y 2 , 2 ) , ( y 1 , 1 ,y 1 , 2 ,y 2 , 1 ,y 2 , 2 ))
=
( y 1 , 1 y 1 , 1
y 1 , 2 y 1 , 2 ,y 1 , 1 y 1 , 2 +
y 1 , 2 y 1 , 1 ,y 2 , 1 y 2 , 1
y 2 , 2 y 2 , 2 ,y 2 , 1 y 2 , 2 +
y 2 , 2 y 2 , 1 )
=
on Y .
Search WWH ::




Custom Search