Biomedical Engineering Reference
In-Depth Information
Acknowledgments The first author was a SIRF scholar in Australia and was in receipt of the UIS
scholarship during the completion of this research. The financial support of the National Health
and Medical Research Council (Australia) Grant No.1006031 is gratefully acknowledged.
References
1. Hanahan, D., Weinberg, R.A.: The Hallmarks of Cancer. Cell 100, 57-70 (2000)
2. Sutherland, R.: Cell and environment interactions in tumor microregions: The multicell
spheroid model. Science 240, 177-184 (1988)
3. Greenspan, H.P.: Models for the growth of a solid tumor by diffusion. Stud Appl Math. L1(4),
31-340 (1972)
4. Gatenby, R.A., Gawlinski, E.T.: A reaction diffusion model of cancer invasion. Cancer. Res.
56, 5745-5753 (1996)
5. Ward, J.P., King, J.R.: Mathematical modelling of avascular-tumour growth - I. IMA J. Math.
Appl. Med. Biol. 14, 39-69 (1997)
6. Ferreira, S.C., Martins, M.L., Vilela, M.J.: Reaction-diffusion model for the growth of
avascular tumor. Phys. Rev. E. 65, 021907 (2002)
7. Ambrosi, D., Mollica, F.: On the mechanics of a growing tumor. Int. J. Eng. Sci. 40,
1297-1316 (2002)
8. Byrne, H., Preziosi, L.: Modelling solid tumour growth using the theory of mixtures. Math.
Med. Biol. 20, 341-366 (2003)
9. Cristini, V., Li, X., Lowengrub, J.S., Wise, S.M.: Nonlinear simulations of solid tumor growth
using a mixture model—Invasion and branching. J. Math. Biol. 58, 723-763 (2009)
10. Araujo, R.P., McElwain, D.L.S.: A history of the study of solid tumour growth—The contri-
bution of mathematical modelling. Bull. Math. Biol. 66, 1039-1091 (2004)
11. Qi, A., Zheng, X., Du, C., An, B.: A cellular automaton model of cancerous growth. J. Theor.
Biol. 161, 1-12 (1993)
12. Dormann, S., Deutsch, A.: Modeling of self-organized avascular tumor growth with a hybrid
cellular automaton. In Silico Biol. 2, 393-406 (2002)
13. Wang, Z., Deisboeck, T.S.: Computational modeling of brain tumors—Discrete, continuum or
hybrid. Sci. Model. Simul. 15, 381-393 (2008)
14. Anderson, A.R.A.: A hybrid mathematical model of solid tumor invasion: the importance of
cell adhesion. Math. Med. Biol. 22, 163-186 (2005)
15. Alarcon, T., Byrne, H.M., Maini, P.K.: Towards whole-organ modelling of tumour growth.
Prog. Biophys. Mol. Biol. 75, 451-472 (2004)
16. Sottoriva, A., Verhoeff, J.C., Borovski, T., McWeeney, S.K., Naumov, L., Medema, J.P.,
Sloot, P.M.A., Vermeulen, L.: Cancer stem cell tumour model reveals invasive morphology
and increased phenotypical heterogeneity. Cancer Res. 1, 46-56 (2010)
17. Wolfram, S.: Theory and Applications of Cellular Automata. World Scientific, Singapore
(1986)
18. Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign, IL (2002)
19. Kansal, A.R., Torquato, S., Chiocca, E.A., Deisboeck, T.S.: Emergence of a subpopulation in a
computational model of tumor growth. J. Theor. Biol. 207, 431-441 (2000)
20. Vermeulen, L., Torado, M., Mello, F.S., Sprick, M.R., Kemper, K., Alea, M.P., Richel, D.J.,
Stassi, G., Medema, J.P.: Single-cell cloning of colon cancer stem cells reveals a multi-lineage
differentiation capacity. Proc. Natl. Acad. Sci. USA 105(36), 13427-13432 (2008)
21. Sherwood, L.: Human physiology: From cells to systems. Brooks/Cole, Cengage Learning
(2010), ISBN 9780495391845; ISBN 0495391840
Search WWH ::




Custom Search