Biomedical Engineering Reference
In-Depth Information
55. Qian JR, Lou XH, Zhang YT, Xiao Y, Soh HT (2009) Generation of highly specific aptamers
via micromagnetic selection. Anal Chem 81(13):5490-5495. doi: 10.1021/Ac900759k
56. Cox JC, Rudolph P, Ellington AD (1998) Automated RNA selection. Biotechnol Prog
14(6):845-850
57. Cox JC, Ellington AD (2001) Automated selection of anti-protein aptamers. Bioorg Med Chem
9(10):2525-2531
58. Cox JC, Hayhurst A, Hesselberth J, Bayer TS, Georgiou G, Ellington AD (2002) Automated
selection of aptamers against protein targets translated in vitro: from gene to aptamer. Nucleic
Acids Res 30(20):e108. doi : 10.1093/nar/gnf107
59. Eulberg D, Buchner K, Maasch C, Klussmann S (2005) Development of an automated in vitro
selection protocol to obtain RNA-based aptamers: identification of a biostable substance P
antagonist. Nucleic Acids Res 33(4):e45. doi: 10.1093/nar/gni044
60. Schlosser K, Li YF (2009) Biologically inspired synthetic enzymes made from DNA. Chem
Biol 16(3):311-322. doi : 10.1016/j.chembiol.2009.01.008
61. Yan H, Park SH, Finkelstein G, Reif JH, LaBean TH (2003) DNA-templated self-assembly of
protein arrays and highly conductive nanowires. Science 301(5641):1882-1884
62. Li HY, Park SH, Reif JH, LaBean TH, Yan H (2004) DNA-templated self-assembly of protein
and nanoparticle linear arrays. J Am Chem Soc 126(2):418-419. doi: 10.1021/Ja0383367
63. He Y, Tian Y, Ribbe AE, Mao CD (2006) Antibody nanoarrays with a pitch of similar to 20
nanometers. J Am Chem Soc 128(39):12664-12665. doi: 10.1021/Ja065467C
64. Niemeyer CM, Sano T, Smith CL, Cantor CR (1994) Oligonucleotide-directed self-assembly of
proteins - semisynthetic DNA streptavidin hybrid molecules as connectors for the generation
of macroscopic arrays and the construction of supramolecular bioconjugates. Nucleic Acids
Res 22(25):5530-5539
65. Wang ZG, Wilner OI, Willner I (2009) Self-assembly of aptamer-circular DNA nanostructures
for controlled biocatalysis. Nano Lett 9(12):4098-4102. doi: 10.1021/Nl902317p
66. Baner J, Nilsson M, Mendel-Hartvig M, Landegren U (1998) Signal amplification of padlock
probes by rolling circle replication. Nucleic Acids Res 26(22):5073-5078
67. Cheglakov Z, Weizmann Y, Braunschweig AB, Wilner OL, Willner I (2008) Increasing the
complexity of periodic protein nanostructures by the rolling-circle-amplified synthesis of
aptamers. Angew Chem Int Ed 47(1):126-130. doi: 10.1002/anie.200703688
68. Liu Y, Lin CX, Li HY, Yan H (2005) Aptamer-directed self-assembly of protein arrays on a
DNA nanostructure. Angew Chem Int Ed 44(28):4333-4338. doi: 10.1002/anie.200501089
69. Chhabra R, Sharma J, Ke YG, Liu Y, Rinker S, Lindsay S, Yan H (2007) Spatially addressable
multiprotein nanoarrays templated by aptamer-tagged DNA nanoarchitectures. J Am Chem
Soc 129(34):10304-11305. doi: 10.1021/Ja072410u
70. Garibotti AV, Knudsen SM, Ellington AD, Seeman NC (2006) Functional DNAzymes orga-
nized into two-dimensional arrays. Nano Lett 6(7):1505-1507. doi: 10.1021/Nl0609955
71. Weizmann Y, Braunschweig AB, Wilner OI, Cheglakov Z, Willner I (2008) Supramolec-
ular aptamer-thrombin linear and branched nanostructures. Chem Commun 40:4888-4890.
doi: 10.1039/B812486h
72. Rinker S, Ke YG, Liu Y, Chhabra R, Yan H (2008) Self-assembled DNA nanostructures
for distance-dependent multivalent ligand-protein binding. Nat Nanotechnol 3(7):418-422.
doi: 10.1038/nnano.2008.164
73. Liu
XW,
Yan
H,
Liu
Y,
Chang
Y
(2011)
Targeted
cell-cell
interactions
by
DNA
nanoscaffold-templated
multivalent
bispecific
aptamers.
Small
7(12):1673-1682.
doi: 10.1002/smll.201002292
74. Ali MM, Li YF (2009) Colorimetric sensing by using allosteric-DNAzyme-coupled rolling
circle amplification and a peptide nucleic acid-organic dye probe. Angew Chem Int Ed
48(19):3512-3515. doi: 10.1002/anie.200805966
75. Cheglakov Z, Weizmann Y, Basnar B, Willner I (2007) Diagnosing viruses by the rolling circle
amplified synthesis of DNAzymes. Org Biomol Chem 5(2):223-225. doi: 10.1039/B615450f
Search WWH ::




Custom Search