Biomedical Engineering Reference
In-Depth Information
32. Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (1982) Self-Splicing
RNA - auto-excision and auto-cyclization of the ribosomal-RNA intervening sequence of
Tetrahymena. Cell 31(1):147-157. doi: 10.1016/0092-8674(82)90414-7
33. Guerriertakada
C,
Gardiner
K,
Marsh
T,
Pace
N,
Altman
S
(1983)
The
RNA
moi-
ety
of
ribonuclease-P
is
the
catalytic
subunit
of
the
enzyme.
Cell
35(3):849-857.
doi: 10.1016/0092-8674(83)90117-4
34. Santoro SW, Joyce GF (1997) A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad
Sci U S A 94(9):4262-4266. doi : 10.1073/pnas.94.9.4262
35. Liu JW, Brown AK, Meng XL, Cropek DM, Istok JD, Watson DB, Lu Y (2007) A catalytic
beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. Proc
Natl Acad Sci U S A 104(7):2056-2061. doi: 10.1073/pnas.0607875104
36. Santoro SW, Joyce GF, Sakthivel K, Gramatikova S, Barbas CF (2000) RNA cleavage by a
DNA enzyme with extended chemical functionality. J Am Chem Soc 122(11):2433-2439
37. Carmi N, Shultz LA, Breaker RR (1996) In vitro selection of self-cleaving DNAs. Chem Biol
3(12):1039-1046
38. Carmi N, Balkhi SR, Breaker RR (1998) Cleaving DNA with DNA. Proc Natl Acad Sci U S A
95(5):2233-2237
39. Flynn-Charlebois A, Wang YM, Prior TK, Rashid I, Hoadley KA, Coppins RL, Wolf AC,
Silverman SK (2003) Deoxyribozymes with 2 0 -5 0 RNA ligase activity. J Am Chem Soc
125(9):2444-2454. doi: 10.1021/Ja028774y
40. Hoadley
KA,
Purtha
WE,
Wolf
AC,
Flynn-Charlebois
A,
Silverman
SK
(2005)
-dependent deoxyribozymes that form natural and unnatural RNA linkages. Biochem-
istry 44(25):9217-9231. doi: 10.1021/Bi05046g
41. Purtha WE, Coppins RL, Smalley MK, Silverman SK (2005) General deoxyribozyme-
catalyzed synthesis of native 3 0 -5 0 RNA linkages. J Am Chem Soc 127(38):13124-13125.
doi: 10.1021/Ja0533702
42. Cuenoud B, Szostak JW (1995) A DNA metalloenzyme with DNA-ligase activity. Nature
375(6532):611-614
43. Sreedhara A, Li YF, Breaker RR (2004) Ligating DNA with DNA. J Am Chem Soc
126(11):3454-3460. doi: 10.1021/Ja039713i
44. Travascio P, Bennet AJ, Wang DY, Sen D (1999) A ribozyme and a catalytic DNA with
peroxidase activity: active sites versus cofactor-binding sites. Chem Biol 6(11):779-787
45. Travascio P, Li YF, Sen D (1998) DNA-enhanced peroxidase activity of a DNA aptamer-hemin
complex. Chem Biol 5(9):505-517
46. Wilson DS, Szostak JW (1999) In vitro selection of functional nucleic acids. Annu Rev
Biochem 68:611-647
47. Cairns MJ, Hopkins TM, Witherington C, Wang L, Sun LQ (1999) Target site selection for an
RNA-cleaving catalytic DNA. Nat Biotechnol 17(5):480-486
48. Liu MZ, Kagahara T, Abe H, Ito Y (2009) Direct in vitro selection of hemin-binding DNA
aptamer with peroxidase activity. Bull Chem Soc Jpn 82(1):99-104. doi : 10.1246/Bcsj.82.99
49. Sooter LJ, Riedel T, Davidson EA, Levy M, Cox JC, Ellington AD (2001) Toward automated
nucleic acid enzyme selection. Biol Chem 382(9):1327-1334
50. Sabeti PC, Unrau PJ, Bartel DP (1997) Accessing rare activities from random RNA sequences:
the importance of the length of molecules in the starting pool. Chem Biol 4(10):767-774
51. Mendonsa
Zn2
C
SD,
Bowser
MT
(2005)
In
vitro
selection
of
aptamers
with
affinity
for
neuropeptide
Y
using
capillary
electrophoresis.
J
Am
Chem
Soc
127(26):9382-9383.
doi: 10.1021/Ja052405n
52. Mendonsa SD, Bowser MT (2004) In vitro evolution of functional DNA using capillary
electrophoresis. J Am Chem Soc 126(1):20-21. doi: 10.1021/Ja037832s
53. Mendonsa SD, Bowser MT (2004) In vitro selection of high-affinity DNA ligands for human
IgE using capillary electrophoresis. Anal Chem 76(18):5387-5392. doi : 10.1021/Ac049857v
54. Lou XH, Qian JR, Xiao Y, Viel L, Gerdon AE, Lagally ET, Atzberger P, Tarasow TM, Heeger
AJ, Soh HT (2009) Micromagnetic selection of aptamers in microfluidic channels. Proc Natl
Acad Sci U S A 106(9):2989-2994. doi: 10.1073/pnas.0813135106
Search WWH ::




Custom Search