Biomedical Engineering Reference
In-Depth Information
135. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for
biomedical applications. Biomaterials 26:3995-4021
136. Ito A, Kuga Y, Honda H, Kikkawa H, Horiuchi A, Watanabe Y, Kobayashi T (2004) Magnetite
nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with
hyperthermia. Cancer Lett 212:167-175
137. Kohler N, Sun C, Wang J, Zhang M (2005) Methotrexate-modified superparamagnetic
nanoparticles and their intracellular uptake into human cancer cells. Langmuir 21:8858-8864
138. Perez JM, Josephson L, O'Loughlin T, Hogemann D, Weissleder R (2002) Magnetic
relaxation switches capable of sensing molecular interactions. Nat Biotechnol 20:816-820
139. Josephson L, Perez JM, Weissleder R (2001) Magnetic nanosensors for the detection of
oligonucleotide sequences. Angew Chem Int Ed 40:3204-3206
140. Zhao M, Josephson L, Tang Y, Weissleder R (2003) Magnetic sensors for protease assays.
Angew Chem Int Ed 42:1375-1378
141. Kaittanis C, Naser SA, Perez JM (2007) One-step, nanoparticle-mediated bacterial detection
with magnetic relaxation. Nano Lett 7:380-383
142. Perez JM, Simeone FJ, Saeki Y, Josephson L, Weissleder R (2003) Viral-induced self-
assembly of magnetic nanoparticles allows the detection of viral particles in biological media.
J Am Chem Soc 125:10192-10193
143. Tsourkas A, Hofstetter O, Hofstetter H, Weissleder R, Josephson L (2004) Magnetic
relaxation switch immunosensors detect enantiomeric impurities. Angew Chem Int Ed
43:2395-2399
144. Yigit MV, Mazumdar D, Kim HK, Lee JH, Dintsov B, Lu Y (2007) Smart “turn-on” magnetic
resonance contrast agents based on aptamer-functionalized superparamagnetic iron oxide
nanoparticles. Chembiochem 8:1675-1678
145. Yigit MV, Mazumdar D, Lu Y (2008) MRI detection of thrombin with aptamer functionalized
superparamagnetic iron oxide nanoparticles. Bioconjug Chem 19:412-417
146. Bamrungsap S, Shukoor MI, Chen T, Sefah K, Tan W (2011) Detection of lysozyme magnetic
relaxation switches based on aptamer-functionalized superparamagnetic nanoparticles. Anal
Chem 83:7795-7799
147. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov
AA (2004) Electric field effect in atomically thin carbon films. Science 306:666-669
148. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183-191
149. Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev
110:132-145
150. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-
dimensional nanomaterial. Angew Chem Int Ed 48:7752-7777
151. Yang WR, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F (2010) Carbon
nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed
49:2114-2138
152. Shao YY, Wang J, Wu H, Liu J, Aksay IA, Lin YH (2010) Graphene based electrochemical
sensors and biosensors: a review. Electroanalysis 22:1027-1036
153. Wang Y, Li ZH, Wang J, Li JH, Lin YH (2011) Graphene and graphene oxide: biofunctional-
ization and applications in biotechnology. Trends Biotechnol 29:205-212
154. Gulbakan B, Yasun E, Shukoor MI, Zhu Z, You M, Tan X, Sanchez H, Powell DH, Dai
H, Tan W (2010) A dual platform for selective analyte enrichment and ionization in mass
spectrometry using aptamer-conjugated graphene oxide. J Am Chem Soc 132:17408-17410
155. Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of
water-insoluble cancer drugs. J Am Chem Soc 130:10876-10877
156. Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano-graphene
oxide for cellular imaging and drug delivery. Nano Res 1:203-212
157. Li JL, Bao HC, Hou XL, Sun L, Wang XG, Gu M (2012) Graphene oxide nanoparticles as
a nonbleaching optical probe for two-photon luminescence imaging and cell therapy. Angew
Chem Int Ed 51:1830-1834
Search WWH ::




Custom Search