Biomedical Engineering Reference
In-Depth Information
38. Li YL, Zheng YQ, Gong M, Deng ZX (2012) Pt nanoparticles decorated with a discrete number
of DNA molecules for programmable assembly of Au-Pt bimetallic superstructures. Chem
Commun 48:3727-3729
39. Gu HZ, Chao J, Xiao SJ, Seeman NC (2010) A proximity-based programmable DNA nanoscale
assembly line. Nature 465:202-205
40. Pal S, Sharma J, Yan H, Liu Y (2009) Stable silver nanoparticle-DNA conjugates for directed
self-assembly of core-satellite silver-gold nanoclusters. Chem Commun 45:6059-6061
41. Pal S, Deng ZT, Ding BQ, Yan H, Liu Y (2010) DNA-origami-directed self-assembly of
discrete silver-nanoparticle architectures. Angew Chem Int Ed 49:2700-2704
42. Carstairs HMJ, Lymperopoulos K, Kapanidis AN, Bath J, Turberfield AJ (2009) DNA
monofunctionalization of quantum dots. Chembiochem 10:1781-1783
43. Fu AH, Micheel CM, Cha J, Chang H, Yang H, Alivisatos AP (2004) Discrete nanostructures
of quantum dots/Au with DNA. J Am Chem Soc 126:10832-10833
44. Lee JH, Wernette DP, Yigit MV, Liu JW, Wang ZD, Lu Y (2007) Site-specific control of
distances between gold nanoparticles using phosphorothioate anchors on DNA and a short
bifunctional molecular fastener. Angew Chem Int Ed 46:9006-9010
45. Ma N, Sargent EH, Kelley SO (2009) One-step DNA-programmed growth of luminescent and
biofunctionalized nanocrystals. Nat Nanotechnol 4:121-125
46. Tikhomirov G, Hoogland S, Lee PE, Fischer A, Sargent EH, Kelley SO (2011) DNA-based
programming of quantum dot valency, self-assembly and luminescence. Nat Nanotechnol
6:485-490
47. Bethune DS, Klang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993)
Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:
605-607
48. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56-58
49. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:
603-605
50. Williams KA, Veenhuizen PTM, de la Torre BG, Eritja R, Dekker C (2002) Nanotechnology:
carbon nanotubes with DNA recognition. Nature 420:761
51. Li SN, He PG, Dong JH, Guo ZX, Dai LM (2005) DNA-directed self-assembling of carbon
nanotubes. J Am Chem Soc 127:14-15
52. Liu J, Rinzler AG, Dai HJ, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov
K, Huffman CB, Rodriguez-Macias F, Shon YS, Lee TR, Colbert DT, Smalley RE (1998)
Fullerene pipes. Science 280:1253-1256
53. Zhang J, Zou HL, Qing Q, Yang YL, Li QW, Liu ZF, Guo XY, Du ZL (2003) Effect of chemical
oxidation on the structure of single-walled carbon nanotubes. J Phys Chem B 107:3712-3718
54. Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, Richardson RE, Tassi NG
(2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2:338-342
55. Zheng M, Jagota A, Strano MS, Santos AP, Barone P, Chou SG, Diner BA, Dresselhaus MS,
Mclean RS, Onoa GB, Samsonidze GG, Semke ED, Usrey M, Walls DJ (2003) Structure-based
carbon nanotube sorting by sequence-dependent DNA assembly. Science 302:1545-1548
56. Tu XM, Manohar S, Jagota A, Zheng M (2009) DNA sequence motifs for structure-specific
recognition and separation of carbon nanotubes. Nature 460:250-253
57. Li YL, Han XG, Deng ZX (2007) Grafting single-walled carbon nanotubes with highly
hybridizable
DNA sequences:
potential
building blocks
for
DNA-programmed
material
assembly. Angew Chem Int Ed 46:7481-7484
58. Maune HT, Han SP, Barish RD, Bockrath M, Goddard WA III, Rothemund PWK, Winfree
E (2010) Self-assembly of carbon nanotubes into two-dimensional geometries using DNA
origami templates. Nat Nanotechnol 5:61-66
59. Han XG, Li YL, Deng ZX (2007) DNA-wrapped single-walled carbon nanotubes as rigid
templates for assembling linear gold nanoparticle arrays. Adv Mater 19:1518-1522
60. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183-191
61. Mattevi C, Kim H, Chhowalla M (2011) A review of chemical vapour deposition of graphene
on copper. J Mater Chem 21:3324-3334
Search WWH ::




Custom Search