Biomedical Engineering Reference
In-Depth Information
Soykan, O., 2002. Power sources for implantable medical devices. Med. Device Manuf. Technol.,
76
79.
Starner, T., 1996. Human-powered wearable computing. IBM Syst. J. 35 (3 4), 618 629.
Starner, T., Paradiso, J.A., 2004. Human generated power for mobile electronics. In: Piguet, C.
(ed.), Low Power Electronics Design, Chapter 45. CRC Press pp. 1 35.
Stephen, N.G., 2006. On energy harvesting from ambient vibration. J. Sound Vib. 293 (1
2),
409
425.
Tashiro, R., Kabei, N., Katayama, K., Tsuboi, E., Tsuchiya, K., 2002. Development of an elec-
trostatic generator for a cardiac pacemaker that harnesses the ventricular wall motion. J. Artif.
Organs 5 (4), 0239 0245.
Taylor, G.W., Burns, J.R., Kammann, S.A., Powers, W.B., Welsh, T.R., 2001. The energy har-
vesting eel: a small subsurface ocean/river power generator. IEEE J. Oceanic Eng. 26 (4),
539 547.
Tsutsumino, T., Suzuki, Y., Kasagi, N., Sakane, Y., 2006. Seismic power generator using high-
performance polymer electret. In: Micro Electro Mechanical Systems, MEMS 2006, Jan. 22
26,
Istambul, Turkey, pp. 98
101.
Van Donk, R.H., 2000. Design of an Alternatively Powered Remote Control. Master ' s thesis,
Delf University of Technology.
Varshney, U., 2007. Pervasive healthcare and wireless health monitoring. Mobile Net-Works
Appl. 12 (2 3), 113 127.
Von Buren, T., Troster, G., 2007. Design and optimization of a linear vibration-driven electro-
magnetic micro-power generator. Sens. Actuators A Phys. 135 (2), 765
775.
Waits, M.C., Geil, B., Ghodssi, R., 2007. Encapsulated ball bearings for rotary micro machines.
J. Micromech. Microeng. 17 (9), S224 S229.
Wang, J., Wang, W., Jewell, G.W., Howe, D., 2005a. Design of a miniature permanent-magnet
generator and energy storage system. IEEE Trans. Ind. Electron. 52 (5), 1383 1390.
Wang, R.R.J., Kamper, M.J., Van derWesthuizen, K., Gieras, J.F., 2005b. Optimal design of a
coreless stator axial flux permanent-magnet generator. IEEE Trans. Magn. 41 (1), 55
64.
Wang, Z.L., 2008. Self-powered nanotech. Sci. Am. 298, 82 87.
Wang, Z.L., Wang, X., Song, J., Liu, J., Gao, Y., 2008. Piezoelectric nanogenerators for self-
powered nanodevices. IEEE Pervasive Comput. 7 (1), 49 55.
Watkins, C., Shen, B., Venkatasubramanian, R., 2005. Low-grade-heat energy harvesting using
superlattice thermoelectrics for applications in implantable medical devices and sensors. ICT2005,
June 19
267.
Yang, R., Quin, Y., Li, C., Zhu, G., Wang, Z., 2009. Converting biomechanical energy into
electricity by a muscle-movement driven nanogenerator. NanoLett 9 (3), 1201 1205.
Yazdi, N., Mason, A., Najafi, K., Wise, K.D., 2000. A generic interface chip for capacitive
sensors in low-power multi-parameter microsystems. Sens. Actuators A Phys. 84 (3), 351
23, Clemson University, USA, 265
361.
Yeatman, E.M., 2008. Energy harvesting from motion using rotating and gyroscopic proof
masses. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical
Engineering Science, vol. 222, N. 1 pp. 27 36 doi: 10.1243/09544062JMES701.
Yeatman, E.M., Mitcheson, P.D., Holmes, A.S., 2007. Micro-engineered devices for motion
energy harvesting. In: Electron Devices Meeting, IEDM 2007, Dec. 10 12, Washington DC,
USA, pp. 375 378.
Zeng, F.G., Rebscher, S., Harrison, W., Sun, X., Feng, H., 2008. Cochlear implants: system
design, integration, and evaluation. IEEE Rev. Biomed. Eng. 1, 115
142.
Search WWH ::




Custom Search