Biomedical Engineering Reference
In-Depth Information
Goto, H., Sugiura, T., Harada, Y., Kazui, T., 1999. Feasibility of using the automatic generating
system for quartz watches as a leadless pacemaker power source. Med. Biol. Eng. Comput. 37 (1),
377
380.
Hao, Y., Foster, R., 2008. Wireless body sensor networks for health-monitoring applications.
Physiol. Meas. 29, R27 R56.
Harb, J., Lafollette, R.M., Selfridgec, R.H., Howell, L.L., 2002. Microbatteries for self-sustained
hybridmicropower supplies. J. Power Sources 104 (1), 46 51.
Hirasaki, E., Moore, S.T., Raphan, T., Cohen, B., 1999. Effects of walking velocity on vertical
head and body movements during locomotion. Exp. Brain Res. 127 (2), 117
130.
Holmes, F.F., 2001. The role of lithium batteries in modern health care. J. Power Sources 97 98,
739 741.
Jansen, A.J., Stevels, A.L.N., 1999. Human power, a sustainable option for electronics. In:
Electronics and the Environment, ISEE 1999, May 11 13, Danvers, Massachusetts, pp. 215 218.
Johnson, M.D., Otto, K.J., Williams, J.C., Kipke, D.R., 2004. Bias voltages at microelec-
trodes change neural interface properties in vivo. In: Engineering in Medicine and Biology
Society, 2004. IEMBS
'
04. 26th Annual International Conference of the IEEE, Sep. 1
5, San
Francisco,California,USA,vol.2,pp.4103
4106.
Jovanov, E., Milenkovic, A., Otto, C., Groen, P.C., 2005. A wireless body area network of intelli-
gent motion sensors for computer assisted physical rehabilitation. J. Neuroeng. Rehabil. 2, 1 6.
Katz, D., Akiyama, T., 2007. Pacemaker longevity: the world ' s longest-lasting pacemaker. Ann.
Noninvasive Electrocardiol. 12, 223 226.
Knoblauch, R.L., Pietrucha, M.T., Nitzburg, M., 1996. Field studies of pedestrian walking speed
and start-up time. Transportation Research Record No. 1538, pp. 27
38.
Ko, W. H., 1969. Piezoelectric energy converter for electronic implants, U.S. Patent 3,456,134.
Kymissis, J., Kendall, C., Paradiso, J., Gershenfeld, N., 1998. Parasitic power harvesting in shoes.
In: Wearable Computers, Oct. 19 20, Cambridge, Massachusetts, USA, pp. 132 139.
Lee, K.B., 2005. Urine-activated paper batteries for biosystems. J. Micromech. Microeng. 15,
S210
S214.
Lewandowski, B.E., Kilgore, K.L., Gustafson, K.J., 2007. Design considerations for an implantable,
muscle powered piezoelectric system for generating electrical power. Ann. Biomed. Eng. 35 (4),
631 641.
Li, Q., Naing, V., Hoffer, J.A., Weber, D.J., Kuo, A.D., Donelan, J.M., 2008. Biomechanical
energy harvesting: apparatus and method. In: Robotics and Automation, 2008. ICRA 2008, May
19
3677.
Liu, J., Fei, P., Zhou, J., Tummala, R., Wang, Z.L., 2008. Toward high output-power nanogen-
erator. Appl. Phys. Lett. 92 (17).
Luchakov, Y.I., Nozdrachev, A.D., 2009. Mechanism of heat transfer in different regions of
human body. Hum. Anim. Physiol. 36 (1), 53 57.
Makihara, K., Onoda, J., Miyakawa, T., 2006. Low energy dissipation electric circuit for energy
harvesting. Smart Mater. Struct. 15 (5), 1493
23, Pasadena, California, USA, pp. 3672
1498.
Mallela, V.S., Ilankumaran, V., Rao, N.S., 2004. Trends in cardiac pacemaker batteries. Indian
Pacing Electrophysiol. J. 4 (4), 201
212.
Maluf, N., Williams, K., 2004. An Introduction to Microelectromechanical Systems Engineering.
Artech-House.
Marzencki, M., Ammar, Y., Basrour, S., 2008. Integrated power harvesting system including a
mems generator and a power management circuit. Sens. Actuators A Phys. 145
46, 363
370.
Search WWH ::




Custom Search