Biomedical Engineering Reference
In-Depth Information
11. Y. Mendelson, Optical sensors, in Encyclopedia of Medical Devices and Instrumentation,
vol. 5, ed. by J.G. Webster (2006), p. 160
12. S. Ismail, Z.A. Ahmad, A. Berenov, Z. Lockman, Effect of applied voltage and fluoride ion
content on the formation of zirconia nanotube arrays by anodic oxidation of zirconium.
Corros. Sci. 53, 1156-1164 (2011)
13. L.D. Mello, L.T. Kubota, Review of the use of biosensors as analytical tools in the food and
drink industries. Food Chem. 77, 237-256 (2002)
14. A. Rasooly, K.E. Herold, Biosensors for the analysis of food- and waterborne pathogens and
their toxins. J. AOAC Int. 89 (2006)
15. W.J. Kauer, J.S.Dickinson et al., Rapid analyte recognition in a device based on optical
sensors and the olfactory system. Anat. Chem. 68, 2191-2202
16. J. Ito, T. Nakamoto, H. Uematsu, Discrimination of halitosis substance by using QCM sensor
array and preconcentrator. Sens. Actuators, B 99, 431 (2004)
17. K. Persaud, G. Dodd, Analysis of discrimination mechanisms in the mammalian olfactory
system using a model nose. Nature 299(5881), 352-355 (1982)
18. E. Schaller, J.O. Bosset, F. Escher, Food Science Technology. Electronic noses and their
application to food. Lebensm.-Wiss. Technol. 31, 305 (1998)
19. B.C. Munoz, G. Steinthal, S. Sunshine, Conductive polymer-carbon black composites-based
sensor arrays for use in an electronic nose. Sens. Rev. 19(4), 300-305 (1999)
20. I. Lundstrom, S. Shivaraman, C. Svensson, L. Lundkvist, A hydrogen-sensitive MOS field-
effect transistor. Appl. Phys. Lett. 26(2) (1975)
21. S.K. Jha, R.D.S. Yadava, Development of surface acoustic wave electronic nose, Defense
Sci. J. 60(4), 364-376 (2010)
22. I. French, D. George, T. Kretz, F. Templier, H. Lifka, Flexible displays and electronics made
in AM-LCD facilities by the EPLaR process. SID-symposium digest of technical papers, vol.
38, pp. 1680-1683 1 May 2007
23. E. Zampetti et al., Flexible sensorial system based on capacitive chemical sensors integrated
with readout circuits fully fabricated on ultra thin substrate. Sens. Actuators, B 155, 768-774
(2011)
24. T. Kinkeldei et al., An electronic nose on flexible substrates integrated into a smart textile.
Sens. Actuators, B 174, 81-86 (2012)
25. Giménez et al., PAMPA III Electronic Nose: Control Electronics Design. J. Argent. Chem.
Soc. 93(1-3), 115-122 (2005)
26. F. Spinelli, M. Noferini, G. Costa, Near infrared spectroscopy (NIRs): perspective of fire
blight
10 th
detection
in
asymptomatic
plant
material,
in
Proceeding
of
International
Workshop on Fire Blight, Acta Horticulture, vol. 704 (2006), pp. 87-90
27. S. Sankaran, R. Ehsani, Visible-near infrared spectroscopy based citrus greening detection:
Evaluation of spectral feature extraction techniques. Crop Prot. 30, 1508-1513 (2011)
28. K. Arshak, E. Moore, G.M. Lyons, J. Harris, S. Clifford, A review of gas sensors employed in
electronic nose applications. Sens. Rev. 24(2), 181-198 (2004)
29. H. Troy Nagle, S.S. Schiffman, R. Gutierrez-Osuna, The how and why of electronic noses.
IEEE Spectr. 35(9), 22-34 (1998)
30. D. Zook, U. Bonne, T. Samad, Sensors in control systems. Control Syst. Robotics Autom. 21
(Encyclopedia of life support system (EOLSS))
31. P. Hauptmann, R. Borngraeber, J. Schroeder, J. Auge, Artificial electronic tongue in
comparison to the electronic nose—state of the art and trends, in Proceedings of the 54th
Annual IEEE International, Frequency Control Symposium, USA (2000), pp. 22-29
32. A.D. Wilson, M. Baietto, Applications and advances in electronic-nose technologies. Sensors
9, 5099-5148 (2009). doi: 10.3390/s90705099
Search WWH ::




Custom Search