Biomedical Engineering Reference
In-Depth Information
3.5 Conclusions
Chitosan can be dissolved in the digestive tract under acidic conditions, combines bile acid
with its ion-exchanging function, and excretes the combined bile acid outside the body;
consequently, it decreases the cholesterol pool in the body. Chitosan, a deacetylated deriv-
ative of chitin, is a positively charged polymer carrier. The cell adhesion and potential
uptake of chitosan particles are also most favorable due to their attraction to negatively
charged cell membranes, an attractive feature for the treatment of solid tumors. Moreover,
chitosan has shown favorable biocompatibility as well as the ability to increase cell
membrane permeability both in vitro and in vivo . Chitosan can also be degraded by
lysozymes in the body.
References
142. Suh, J. K. and Matthew, H. W. 2000. Application of chitosan-based polysaccharide biomaterials
in cartilage tissue engineering: A review. Biomaterials 21: 2589-2598.
143. Usami, Y., Okamoto, Y., Takayama, T., Shigemasa, Y., and Minami, S. 1998. Chitin and chitosan
stimulate canine polymorphonuclear cells to release leukotriene B4 and prostaglandin E2.
J Biomed Mater Res 42: 517-522.
144. Peluso, G., Petillo, O., Ranieri, M., Santin, M., Ambrosis, L., Calabro, D., Avallone, B., and
Balsamo, G. 1994. Chitosan-mediated stimulation of macrophage function. Biomaterials
15: 1215-1220.
145. Mori, T., Okumura, M., Matsura, M., Ueno, K., TOkura, S., Okamoto, Y., Minami, S., and
Fujinaga, T. 1997. Efects of chitin and its derivates on the proliferation and cytokine production
of broblasts in vitro. Biomaterials 18: 947-951.
146. Pae, H. O., Seo, W. G., Kim, N. Y., Oh, G, S., Kim, G. E., Kim, Y. H., Kwak, H. J., Yun, Y. G., Jun,
C. D., and Chung, H. T. 2001. Induction of granulocytic differentiation in acute promyelocytic
leukemia cells (HL-60) by water-soluble chitosan oligomer. Leukemia Res 25: 339-346.
147. Yoon, H. J., Moon, M. E., Park, H. S., Im, S. Y., and Kim, Y. H. 2007. Chitosanoligosaccharide
(COS) inhibits LPS-induced inflammatory effects in RAW264.7 macrophage cells. Biochem
Biophy Res Comm 358: 954-959.
148. Berthold, A., Cremer, K., and Kreuter, J. 1996. Preparation and characterization of chitosan micro-
spheres as drug carrier for prednisolone sodium phosphate as model for anti-inflammatory
drugs. J Control Release 39: 17-25.
149. Kofuji, K., Akamine, H., Qian, C. J., Watanabe, K., Togan, Y., Nishimura, M., Sugiyama, I.,
Murata, Y., and Kawashima, S. 2004. Therapeutic efficacy of sustained drug release from chito-
san gel on local inflammation. Int J Pharm 272: 65-78.
150. Hara, N. and Okabe, S. 1985. Effects of gefarnate on acute gastric lesions in rats. Folia Pharmacol
Jpn 85: 443-446.
151. Koji, K. 1992. Clinical application of chitin artificial skin (Beschitin W). In: Brine, C. J., Sanford,
P. A., Zikakis, J. P., eds. Advances in Chitin and Chitosan . London: Elsevier, Advances in chitin
and chitosan. pp. 9-15.
152. Ueno, H., Yamada, H., Tanaka, I., Kaba, N., Matsuura, M., Okumura, M., Kadosawa, T., and
Fujinaga, T. 1999. Accelerating effects of chitosan for healing at early phase of experimental
open wound in dogs. Biomaterials 20: 1407-1414.
153. VandeVord. P. J., Matthew, H. W., DeSilva, S. P., Mayton, L., Wu, B., and Wooley, P. H. 2002.
Evaluation of the biocompatibility of a chitosan scaffold in mice. J Biomed Mater Res 59: 585-590.
 
Search WWH ::




Custom Search