Biomedical Engineering Reference
In-Depth Information
The components of the vector U
S d
¼ S d
U are given by
1
K 1 ;
1
K 2 ;
1
K 3 ;
1
K 4 ;
1
K 5 ;
1
K 6
U
S d
¼
;
(8.33a)
where
1
K m
S m
S m
S m
a ¼
þ
þ
ða ¼
1
; ...;
6
Þ
(8.33b)
a
a
a
1
2
3
in the case of no (triclinic) symmetry, and by
12
13
1
K 1 ;
1
K 2 ;
1
K 3 ;
1
K 1 ¼
1
n
n
S m
U
¼
0
;
0
;
0
;
;
E 1
m
m
23
m
m
32
1
K 2 ¼
1
n
21 n
1
K 3 ¼
1
n
13 n
;
;
E 2
E 3
m
31
1
K 1 ;
1
K 1 ;
1
K 3 ;
1
K 3 ¼
1
2
n
1
K 1 ¼
1
K 2
S m
U
¼
0
;
0
;
0
;
;
E 3
12 n
13
21 n
23
1
n
1
n
¼
¼
;
E 1
E 2
n
m
1
K m ½
1
K m ¼
1
2
3
K 1 ¼
1
K m
S m
S m
U
U
U
¼
1
;
1
;
1
;
0
;
0
;
0
;
;
¼
E m
3 ð 1 2 n
m
Þ
¼
(8.34)
E m
in the cases of orthotropic, transversely isotropic, and isotropic symmetries, respec-
tively. As may be seen from (8.33) the incompressibility condition U S d
¼ S d
U ¼
0
requires that S d be singular, Det S d
¼
0. From ( 8.32 )and( 8.34 ) the incompressibility
S d
¼ S d
U
U
condition
0 is expressed in terms of Poisson's ratios for the
orthotropic, transversely isotropic and isotropic symmetries by
¼
E 1 E 3
E 1 E 3
E 1
E 1 þ
m
m
m
n
12 ¼
E 3 Þ ; n
13 ¼
1
E 3 Þ ; n
23 ¼
E 3 ;
(8.35)
E 2 ð
E 1 þ
E 2 ð
E 1 þ
E 1
E 1
1
2
m
m
m
n
12 ¼
1
2 E 3 ;
n
13 ¼
2 E 3 ;
n
31 ¼
(8.36)
and
2, respectively.
The significance of these incompressibility results is illustrated here by simple
geometric considerations. Consider an incompressible isotropic material for which
one must have
n
m
¼
1
=
a 3 is
extended by a uniform tensile stress in one direction, the length in that extension
direction becomes a
m
n
¼
1
=
2 . If a cube of this material with a volume V o ¼
þ D EX a and the lengths of the other two faces become a
þ D
a .
Search WWH ::




Custom Search