Biomedical Engineering Reference
In-Depth Information
Table 6.1 The elasticity
and compliance in different
notations
1
2
3
1
2
3
C 1111
c 11
c 11
^
S 1111
s 11
S 11
S 22
C 2222
c 22
c 22
S 2222
s 22
C 3333
c 33
c 33
^
S 3333
s 33
S 33
c 12
S 12
C 1122
c 12
S 1122
s 12
S 13
C 1133
c 13
c 13
^
S 1133
s 13
C 2233
c 23
c 23
S 2233
s 23
S 23
2 S 44
C 2323
c 44
1
2 c 44
S 2323
1
4 s 44
1
2 S 55
C 1313
c 55
1
2 c 55
S 1313
1
4 s 55
1
C 1212
c 66
1
2 c 66
S 1212
1
4 s 66
2 S 66
1
C 1323
c 54
1
2
S 1323
1
4 s 54
2 S 54
^
c 54
1
2 S 56
C 1312
c 56
1
2 ^
c 56
S 1312
1
4 s 56
1
2 S 64
C 1223
c 64
1
2 c 64
S 1223
1
4 s 64
1
p S 41
C 2311
c 41
1
c 41
S 2311
1
2 s 41
1
p
p S 51
C 1311
c 51
1
c 51
S 1311
1
2 s 51
1
p
p S 61
C 1211
c 61
1
^
c 61
S 1211
1
2 s 61
1
p
p S 42
C 2322
c 42
1
^
c 42
S 2322
1
2 s 42
1
p
C 1322
c 52
1
S 1322
1
2 s 52
S 52
^
c 52
1
p
p
C 1222
c 62
1
S 1222
1
2 s 62
p S 62
^
c 62
1
p
C 2333
c 43
1
S 2333
1
2 s 43
p S 43
c 43
1
p
p S 53
C 1333
c 53
1
S 1333
1
2 s 53
c 53
1
p
p S 63
Column 1 illustrates the Voigt notation of these quantities as
fourth order tensor components in a three-dimensional Car-
tesian space. Column 2 represents the Voigt matrix or double
index notation. Column 3 illustrates the Kelvin-inspired
notation for
C 1233
c 63
1
c 63
S 1233
1
2 s 63
1
p
these quantities as
second order
tensor
components in a six-dimensional Cartesian space
2
3
2
3
2
3
T 11
T 22
T 33
T 23
T 13
T 12
c 11
c 12
c 13
c 14
c 15
c 16
E 11
E 22
E 33
2 E 23
2 E 13
2 E 12
4
5
4
5
4
5
c 12
c 22
c 23
c 24
c 25
c 26
c 13
c 23
c 33
c 34
c 35
c 36
ΒΌ
:
(6.21)
c 14
c 24
c 34
c 44
c 45
c 46
c 15
c 25
c 35
c 45
c 55
c 56
c 16
c 26
c 36
c 46
c 56
c 66
This matrix represents the classical notation of Voigt (1910) for the anisotropic
stress-strain relations. Unfortunately the matrix c appearing in ( 6.21 ) does not
represent the components of a tensor, while symmetric matrices C and S do
represent the components of a second-order tensor in a 6-dimensional space.
Search WWH ::




Custom Search