Cryptography Reference
In-Depth Information
[59] L. Fortnow, “The complexity of perfect zero-knowledge,” in 19th ACM Sym-
posium on the Theory of Computing , pp. 204-209, 1987.
[60] P. Gemmell, An introduction to threshold cryptography . Vol. 2(3), RSA Lab,
1997. CryptoBytes .
[61] R. Gennaro, M. Rabin, and T. Rabin, “Simplified vss and fast-track mul-
tiparty computations with applications to threshold cryptography,” in 17th
ACM Symposium on Principles of Distributed Computing , pp. 101-112, 1998.
[62] O. Goldreich, Modern Cryptography, Probabilistic Proofs and Pseudoran-
domness .Vol.17of Algorithms and Combinatorics series , Springer, 1998.
[63] O. Goldreich, “Secure multi-party computation,” 1998. Working Draft, Avail-
able from http://www.wisdom.weizmann.ac.il/ oded/pp.html.
[64] O. Goldreich, “A uniform complexity treatment of encryption and zero-
knowledge,” Journal of Cryptology , vol. 6(1), pp. 21-53, 1998.
[65] O. Goldreich, Foundations of Cryptography - Basic Tools . Cambridge Uni-
versity Press, 2001.
[66] O. Goldreich, “Concurrent zero-knowledge with timing, revisited,” in 34th
ACM Symposium on the Theory of Computing , pp. 332-340, 2002.
[67] O. Goldreich, Foundations of Cryptography - Basic Applications . Cambridge
University Press, 2004.
[68] O. Goldreich, S. Goldwasser, and S. Micali, “How to construct random func-
tions,” Journal of the ACM , vol. 33(4), pp. 792-807, 1986.
[69] O. Goldreich and J. Hastad, “On the complexity of interactive proofs with
bounded communication,” IPL , vol. 67(4), pp. 205-214, 1998.
[70] O. Goldreich and A. Kahan, “How to construct constant-round zero-knowledge
proof systems for np,” Journal of Cryptology , vol. 9(2), pp. 167-189, 1996.
[71] O. Goldreich and H. Krawczyk, “On the composition of zero-knowledge proof
systems,” SIAM Journal on Computing , vol. 25(1), pp. 169-192, 1996.
[72] O. Goldreich and L. Levin, “Hard-core predicates for any one-way function,”
in 21st ACM Symposium on the Theory of Computing , pp. 25-32, 1989.
[73] O. Goldreich and L. Levin, Fair computation of general functions in presence
of immoral majority . Vol. 537, Springer-Verlag, 1991. Crypto90 Lecture Notes
in Computer Science.
[74] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental game
- a completeness theorem for protocols with honest majority,” in 19th ACM
Symposium on the Theory of Computing , pp. 218-229, 1987. See details in
(63).
[75] O. Goldreich, S. Micali, and A. Wigderson, “Proofs that yield nothing but
their validity or all languages in np have zero-knowledge proof systems,” Jour-
nal of the ACM , vol. 38(1), pp. 691-729, 1991. Preliminary version in 27th
FOCS , 1986.
[76] O. Goldreich and Y. Oren, “Definitions and properties of zero-knowledge proof
systems,” Journal of Cryptology , vol. 7(1), pp. 1-32, 1994.
[77] O. Goldreich, A. Sahai, and S. Vadhan, “Honest-verifier statistical zero-
knowledge equals general statistical zero-knowledge,” in 30th ACM Sympo-
sium on the Theory of Computing , pp. 399-408, 1998.
 
Search WWH ::




Custom Search