Cryptography Reference

In-Depth Information

[27] C. Bennett, G. Brassard, and J. Robert, “Privacy amplification by public

discussion,”
SIAM Journal on Computing
, vol. 17, pp. 210-229, 1998. Prelim-

inary version in
Crypto85
, titled “How to reduce your enemy's information”.

[28] M. Blum, “Coin flipping by phone,”
IEEE Sprig COMPCOM
, pp. 133-137,

1982. See also
SIGACT News
, Vol. 15, No. 1, 1983.

[29] M. Blum, B. Feldman, and T. Micali, “Non-interactive zero-knowledge proof

systems,” in
20th ACM Symposium on Principles of Distributed Computing
,

pp. 103-112, 1988. See (32).

[30] M. Blum and S. Goldwasser,
An e
cient probabilistic public-key encryption

scheme which hides all partial information
. Vol. 196, Springer-Verlag, 1985.

Crypto84
Lecture Notes in Computer Science.

[31] M. Blum and S. Micali, “How to generate cryptographically strong sequences

of pseudo-random bits,”
SIAM Journal on Computing
, vol. 13, pp. 850-864,

1984. Preliminary version in
23rd FOCS
, 1982.

[32] M. Blum, A. D. Santis, S. Micali, and G. Persiano, “Non-interactive zero-

knowledge proof systems,”
SIAM Journal on Computing
, vol. 20(6), pp. 1084-

1118, 1991. (Considered the journal version of (29).

[33] G. Brassard, D. Chaum, and C. Crepeau, “Minimum disclosure proofs of

knowledge,”
Journal of Computer and System Science
, vol. 37(2), pp. 156-

189, 1988.

Preliminary version by Brassard and Crepeau in
27th FOCS
,

1986.

[34] R. Canetti, “Universally composable security: a new paradigm for crypto-

graphic protocols,” in
42nd IEEE Symposium on Foundations of Computer

Science
, pp. 136-145. Full version (with different title) is available from
Cryp-

tology ePrint Archive
, Report 2000/067.

[35] R. Canetti,
Studies in secure multi-party computation and applications
.PhD

thesis, Weizmann Institute of Science, Rehovot, Israel, June 1995. Available

from http://www.wisdom.weizmann.ac.il/ oded/PS/ran-phd.ps.

[36] R. Canetti, “Security and composition of multi-party cryptographic proto-

cols,”
Journal of Cryptology
, vol. 13(1), pp. 143-202, 2000.

[37] R. Canetti, U. Feige, O. Goldreich, and M. Naor, “Adaptively secure multi-

party computation,” in
28th ACM Symposium on the Theory of Computing
,

pp. 639-648, 1996.

[38] R. Canetti, O. Goldreich, and S. Halevi, “The random oracle methodology,

revisited,” in
30th ACM Symposium on the Theory of Computing
, pp. 209-218,

1998.

[39] R. Canetti and A. Herzberg,
Maintaining security in the presence of transient

faults
. Vol. 839, Springer-Verlag, 1994.
Crypto94
Lecture Notes in Computer

Science.

[40] R. Canetti, J. Kilian, E. Petrank, and A. Rosen, “Black-box concurrent zero-

knowledge requires Ω(log
n
) rounds,” in
33rd ACM Symposium on the Theory

of Computing
, pp. 494-503, 2002.

[41] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai, “Universally composable

two-party and multi-party secure computation,” in
34th ACM Symposium on

the Theory of Computing
, pp. 494-503, 2002.