Biomedical Engineering Reference
In-Depth Information
65. Levesque, D., Gicquel, A., Darkrim, F. L., and Kayira, S. B. (2002). Monte
Carlo simulations of hydrogen storage in carbon nanotubes.
J
.
Phys
.
, 9285.
66. Li, F., Xia, Y., Zhao, M., Liu, X., Huang, B., Tan, Z.,
Condensed Matter
,
14
. (2004). Selectable
functionalization of single-walled carbon nanotubes resulting from
CHn (
et al
, 165415.
67. Lim, K. L., Kazemian, H., Yaakob, Z., and Wan Daud, W. R. (2010). Solid-
state materials and methods for hydrogen storage: A critical review.
Chem
n
= 1 - 3) adsorption.
Phys
.
Rev
.
B
,
69
, 216.
68. Liu, C., Chen, Y., Wu, C. Z., Xu, S. T., and Cheng, H. (2010). Hydrogen
storage in carbon nanotubes revisited.
.
Eng
.
Technol
.,
33
, 452.
69. Ma, Y., Xia, Y., Zhao, M., R., W., and Me, L. (2001). Effective hydrogen
storage in single-wall carbon nanotubes.
Carbon
,
48
Phys
.
Rev
.
B
,
63
, 115422.
70. Maeland, A. J. and Skjeltrop, A. T. (2001).
6290753.
71. Metropolis, N., Rosenbluth, A. W., Rosenbluth, N. M., Teller, A. N., and
Teller, E. (1953). Equation of state calculations by fast computing
machines.
Patent No
.
, 1087.
72. Miura, Y., Kasai, H., Dino, W., Nakanishi, H., and Sugimoto, T. (2003). First
principles tudies for the dissociative adsorption of H
J
.
Chemical Phys
.,
21
on graphene.
J
.
2
, 3395.
73. Mohn, P. (2003).
Appl
.
Phys
.,
93
. Springer-Verlag.
74. Naghshineh, N., and Hashemianzadeh, M. (2009). First-principles
study of hydrogen storage on Si atoms decorated C
Magnetism in the Solid State
.
Int
.
J
.
Hydrogen
60
, 2319.
75. Narehood, D. G., Pearce, J. V., Eklund, P. C., Sokol, P. E., Lechner, R. E.,
P.,
Energy
,
34
et al
. (2003). Diffusion of H
adsorbed on single-walled carbon
2
, 205409.
76. Nguyen, T. X., Bae, J.-S., Wang, Y., and Bhatia, S. K. (2009). On the strength
of the hydrogen−carbon interaction as deduced from physisorption.
Langmuir
nanotubes.
Phys
.
Rev
.
B
,
67
, 4314.
77. Nguyen, T. X., Cohaut, N., J.-S., B., and Bhatia, S. K. (2008). New method
for atomistic modeling of the microstructure of activated carbons
using hybrid reverse monte carlo simulatio.
,
25
, 7912.
78. Novoselov, K., Geim, A., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S.,
et al
Langmuir
,
24
. (2004). Electric field effect in atomically thin carbon films.
Science
, 666.
79. Opletal, G., Petersen, T., O'Malley, B., Snook, I., and McCulloch, D. (2002).
Hybrid approach for generating realistic amorphous carbon structure
using metropolis and reverse monte carlo.
,
306
Mol
.
Simul
.,
28
, 927.
Search WWH ::




Custom Search