Biomedical Engineering Reference
In-Depth Information
2.2.5   Conclusion
The critical and constructive analysis (of indirect experiment
character) of the state and the current level of studies on the nature,
characteristics and mechanisms of hydrogen interaction with
graphite and related carbon nanomaterials, demonstrates a real
possibility to optimize specifically the synthesis, preconditioning,
and hydrogen saturation of such materials. The goal is to fabricate
a hydrogen superadsorbent (≥10 wt%) material that would satisfy
the stringent technical requirements [1-3] for on-board hydrogen
accumulation in vehicular applications.
Acknowledgments
This study has been supported by the Russian Foundation of Basic
Research grant no. 12-03-00818-a.
References
1. Satyapal S., Petrovic J., Read C., Thomas G., and Ordaz G. (2007).
Catal
.
Today
,
120
, 246.
2. Committee on Alternatives and Strategies for Future Hydrogen
Production and Use (2004).
Hydrogen Economy: Opportunities, Costs,
Barriers, and R&D Needs
, National Academy Press, Washington.
3. Report of the Basis Research Needs for the Hydrogen Economy (2004).
Basic Energy Sciences Workshop on Hydrogen Production, Storage and
Use
, 2nd Printing (Washington, DC: Office of Science U.S. Department
of Energy).
4. Ströbel R., Garche J., Moseley P. T., Jörisen L., and Wolf G. J. (2006).
Power Sources
,
59
, 781.
5. Nechaev Y. S. (2006).
Physics-Uspekhi
,
49
,
563.
6. Dillon A. C. and Heben M. J. (2001).
Appl. Phys. A
,
72
,
133.
7. Maeland A. J. (2002).
Int. Sci. J. Altern. Energy Ecology
,
1
, 19.
8. Hirscher M. and Becher M. J. (2003).
Nanosci. Nanotech
.,
3
, 3.
1191.
10. Nechaev Y. S. and Alekseeva O. K. (2004).
9. Eletskii A. V. (2004).
Usp. Fiz. Nauk
.,
174
,
Usp. Khim
.,
73
, 1308;
Russ.
1211.
11. Liu C. and Cheng H.-M. J. (2005).
Chem. Rev. , 73 ,
Phys. D: Appl. Phys
.,
38
,
R231.
Search WWH ::




Custom Search