Biomedical Engineering Reference
In-Depth Information
Pappas TC, Wickramanyake WMS, Jan E, Motamedi M, Brodwick M, Kotov NA. (2007)
Nanoscale Engineering of a Cellular Interface with Semiconductor Nanoparticle Films for
Photoelectric Stimulation of Neurons. Nano Lett. 7:513-9.
Patolsky F, Weizmann Y, Willner I (2004) Long-Range Electrical Contacting of Redox Enzymes
by SWCNT Connectors. Angew. Chem. Int. Ed. 43:2113-7.
Patolsky F, Timko BP, Yu G, Fang Y, Greytak AB, Zheng G, Lieber CM (2006) Detection, stimula-
tion, inhibition of neuronal signals with high-density nanowire transistor arrays. Science
Phely-Bobin TS, Tiano T, Farrell B, Fooksa R, Robblee L, Edell DJ, Czerw R (2006) Carbon
Nanotube Based Electrodes for Neuroprosthetic Applications. Mat. Res. Soc. Proc., San
Francisco Spring Meeting.
Poland CA, Duffi n R, Kinloch I, Maynard A, Wallace WAH, Seaton A, Stone V, Brown S, MacNee W,
Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show
asbestos-like pathogenicity in a pilot study. Nature Nanotech. 3:423-8.
Radosavljevic M, Appenzeller, J, Avouris P (2001) Engineering Carbon Nanotubes and Nanotube
Circuits Using Electrical Breakdown, Science 292:706.
Rall W (1962) Electrophysiology of a dendritic neuron model. Biophys. J. 2:145-67.
Razal JM, Gilmore KJ, Wallace GG (2008) Carbon Nanotube Biofi ber Formation in a Polymer-
Free Coagulation Bath. Adv. Funct. Mater 18:61-6.
Robinson DA (1968) The Electrical Properties of Metal Microelectrodes, Proc. IEEE 56(6):1065-71.
Roy S, Vedala H, Roy AD, Kim DH, Doud M, Mathee K, Shin HK, Shimamoto N, Prasad V, Choi W
(2008) Direct electrical measurements on single-molecule genomic DNA using single-walled
carbon nanotubes. Nano Lett. 8(1):26-30.
Rutten WL (2002) Selective electrical interfaces with the nervous system. Annu. Rev. Biomed.
Eng. 4:407-52.
Saito R, Fujita M, Dresselhaus G, Dresselhaus MS. (1992) Electronic structure of graphene tubules
based on C60. Phys. Rev. B Condens. Matter 46(3):1804-11.
Sato Y, Shibata KI, Kataoka H, Ogino SI, Bunshi F, Yokoyama A, Tamura K, Akasaka T, Uo M,
Motomiya K, Jeyadevan B, Hatakeyama R, Watari F, Tohji K (2005) Strict preparation and
evaluation of water-soluble hat-stacked carbon nanofi bers for biomedical application and their
high biocompatibility: infl uence of nanofi ber-surface functional groups on cytotoxicity. Mol.
BioSyst. 1:142-8.
Sayes CM, Liang F, Hudson JL, Mendez J, Guo W, Beach JM, Moore VC, Doyle CD, West JL,
Billups WE, Ausman KD, Vicki L. Colvin (2006) Functionalization density dependence of
single-walled carbon nanotubes cytotoxicity in vitro, Toxicol. Lett. 161:135-42.
Schaefer AT, Larkum ME, Sakmann B, Roth A (2003) Coincidence detection in pyramidal neu-
rons is tuned by their dendritic branching pattern. J Neurophysiol. 89(6):3143-54.
Schoen I, Fromherz P (2007) The mechanism of extracellular stimulation of nerve cells on an
electrolyte-oxide-semiconductor capacitor. Biophys J. 92(3):1096-111.
Schwartz AB, Cui XT, Weber DJ, Moran DW (2006) Brain-controlled interfaces: movement res-
toration with neural prosthetics. Neuron 52(1):205-20.
Silva GA (2006) Neuroscience nanotechnology: progress, opportunities and challenges. Nature
Rev. Neurosci. 7:65-74.
Sinha N, Ma J, Yeow JT (2006) Carbon nanotube-based sensors. J. Nanosci. Nanotechnol.
Sirivisoot S, Yao C, Xiao X, Sheldon BW, Webster TJ (2007) Greater osteoblast functions on
multiwalled carbon nanotubes grown from anodized nanotubular titaniu for orthopedic applica-
tions. Nanotechnology 18:365102.
Snow ES, Novak JP, Campbell PM, Park D (2003) Random networks of carbon nanotubes as an
electronic material, Appl. Phys. Lett. 82:2145.
Storace M, Bove M, Grattarola M, Parodi M (1997) Simulations of the behavior of synaptically
driven neurons via time-invariant circuit models, IEEE Trans. Biomed. Eng. 44(12):1282-7.
Sucapane A, Cellot G, Prato M, Giugliano M, Parpura V, Ballerini L (2008) Interactions between
cultured neurons and carbon nanotubes: A nanoneuroscience vignette. J. Nanoneurosci. 1:1-7.
Search WWH ::

Custom Search