Biomedical Engineering Reference
In-Depth Information
80. Ajayan PM, Schadler LS, Giannaris C, and Rubio A. Single-walled carbon nano-
tube-polymer composites: Strength and weakness. Adv. Mater. 2000;12:750-3.
81. Calvert P. Nanotube composites—A recipe for strength. Nature 1999;399:210-1.
82. Shi XF, Hudson JL, Spicer PP, Tour JM, Krishnamoorti R, and Mikos AG.
Injectable nanocomposites of single-walled carbon nanotubes and biodegrad-
able polymers for bone tissue engineering. Biomacromolecules 2006;7:2237-42.
83. Abarrategi A, Gutierrez MC, Moreno-Vicente C et al. Multiwall carbon nano-
tube scaffolds for tissue engineering purposes. Biomaterials 2008;29:94-102.
84. Wang W, Watari F, Omori M et al. Mechanical properties and biological behav-
ior of carbon nanotube/polycarbosilane composites for implant materials.
J. Biomed. Mater. Res. B Appl. Biomater. 2007;82B:223-30.
85. Helland A, Wick P, Koehler A, Schmid K, and Som C. Reviewing the environ-
mental and human health knowledge base of carbon nanotubes. Cien. Saude
Colet. 2008;13:441-52.
86. Terrones M and Terrones H. The carbon nanocosmos: Novel materials for
the twenty-first century. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci.
2003;361:2789-806.
87. Vajtai R, Wei BQ, and Ajayan PM. Controlled growth of carbon nanotubes.
Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 2004;362:2143-60.
88. Shi XF, Hudson JL, Spicer PP, Tour JM, Krishnamoorti R, and Mikos AG.
Rheological behaviour and mechanical characterization of injectable
poly(propylene fumarate)/single-walled carbon nanotube composites for bone
tissue engineering. Nanotechnology 2005;16:S531-8.
89. Sitharaman B, Tran LA, Pham QP et al. Gadofullerenes as nanoscale magnetic
labels for cellular MRI. Contrast Media Mol. Imaging 2007;2:139-46.
90. Sitharaman B and Wilson LJ. Gadonanotubes as new high-performance MRI
contrast agents. Int. J. Nanomed. 2006;1:291-5.
91. Sitharaman B, Zakharian TY, Saraf A et al. Water-soluble fullerene (C60) deriva-
tives as nonviral gene-delivery vectors. Mol. Pharm. 2008;5:567-78.
92. Iijima S. Helical microtubules of graphitic carbon. Nature 1991;354:56-8.
93. Bethune DS, Kiang CH, Devries MS et al. Cobalt-catalyzed growth of carbon
nanotubes with single-atomic-layer walls. Nature 1993;363:605-7.
94. Ebbesen TW and Ajayan PM. Large-scale synthesis of carbon nanotubes. Nature
1992;358:220-2.
95. Iijima S. Growth of carbon nanotubes. Mater. Sci. Eng. B Solid State Mater. Adv.
Technol. 1993;19:172-80.
96. Dresselhaus MS, Dresselhaus G, and Eklund PC. Fullerenes. J. Mater. Res.
1993;8:2054-97.
97. Harris PJF. New perspectives on the structure of graphitic carbons. Crit. Rev.
Solid State Mater. Sci. 2005;30:235-53.
98. Terrones M, Hsu WK, Kroto HW, and Walton DRM. Nanotubes: A revolution in
materials science and electronics. Fullerenes Relat. Struct. 1999;199:189-234.
99. Maser WK, Munoz E, Benito AM et al. Production of high-density single-
walled nanotube material by a simple laser-ablation method. Chem. Phys. Lett.
1998;292:587-93.
100. Eklund PC, Pradhan BK, Kim UJ et al. Large-scale production of single-walled
carbon nanotubes using ultrafast pulses from a free electron laser. Nano Lett.
2002;2:561-6.
101. Baker RTK. Catalytic growth of carbon filaments. Carbon 1989;27:315-23.
Search WWH ::




Custom Search