Biomedical Engineering Reference
In-Depth Information
108. Abraham, M.H.; Green, C.E.; Acree Jr., W.E. Correlation and prediction of the
solubility of Buckminster-fullerene in organic solvents; estimation of some
physicochemical properties. J. Chem. Soc. Perkin Trans. 2000 , 2, 281-286.
109. Maddalena, R.L.; MacLeod, M.J.; McKone, T.E. and Sohn, M.D. Hazard assess-
ment and sensitivity analysis for Buckminster fullerene in the environment.
Platform Presentation 681, Proceedings of the SETAC NA 2005 Symposium, 2005 .
110. Nowack, B. and Bucheli, T.D. Occurrence, behavior and effects of nanoparticles
in the environment. Environ. Pollut. 2007 , 150, 5-22.
111. Baalousha, M.; Manciulea, A.; Cumberland, S.; Kendall, K.; Lead, J.R.
Aggregation and surface properties of iron oxide nanoparticles: Influence of pH
and natural organic matter. Environ. Toxicol. Chem. 2008 , 27, 1875-1882.
112. Diegoli, S.; Manciulea, A.L.; Begum, S.; Jones, I.P.; Lead, J.R.; Preece, J.A.
Interaction between manufactured gold nanoparticles and naturally occurring
organic macromolecules. Sci. Total Environ. 2008 , 402, 51-61.
113. Hyung, H.; Fortner, J.D.; Hughes, J.B.; Kim, J. Natural organic matter stabilizes
carbon nanotubes in the aqueous phase. Environ. Sci. Technol. 2007 , 41, 179-184.
114. Hyung, H. and Kim, J. Natural organic matter (NOM) adsorption to multi-
walled carbon nanotubes: Effect of NOM characteristics and water quality
parameters. Environ. Sci. Technol. 2008 , 42, 4416-4421.
115. Chen, K.L. and Elimelech, M. Influence of humic acid on the aggregation kinet-
ics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solu-
tions. J. Colloid Interface Sci. 2007 , 309, 126-134.
116. Labille, J.; Brant, J.; Villieras, F.; Pelletier, M.; Thill, A.; Masion, A.; Wiesner,
M; Rose, J.; Bottero, J.Y. Affinity of C60 fullerenes with water. Fuller. Nanotub.
Carbon Nanostruct. (USA) 2006 , 14, 307-314.
117. Ju-Nam, Y. and Lead, J.R. Manufactured nanoparticles: An overview of their
chemistry, interactions and potential environmental implications. Sci. Total
Environ. 2008 , 400, 396-414.
118. Kretzschmar, R.; Borkovec, M.; Grolimund, D.; Elimelech, M. Mobile subsurface
colloids and their role in contaminant transport. Adv. Agron. 1999 , 66, 121-194.
119. Ryan, J.N. and Elimelech, M. Colloid mobilization and transport in groundwa-
ter. Colloids Surf. A Physicochem. Eng. Asp. 1996 , 107, 1-56.
120. Franchi, A. and O'Melia, C.R. Effects of natural organic matter and solution
chemistry on the deposition and reentrainment of colloids in porous media.
Environ. Sci. Technol. 2003 , 37, 1122-1129.
121. Espinasse, B.; Hotze, E.M.; Wiesner, M.R. Transport and retention of colloidal
aggregates of C-60 in porous media: Effects of organic macromolecules, ionic
composition, and preparation method. Environ. Sci. Technol. 2007 , 41, 7396-7402.
122. Lecoanet, H.F.; Bottero, J.; Wiesner, M.R. Laboratory assessment of the mobility
of nanomaterials in porous media. Environ. Sci. Technol. 2004 , 38, 5164-5169.
123. Zhu, H.; Han, J.; Xiao, J.Q.; Jin, Y. Uptake, translocation, and accumulation of
manufactured iron oxide nanoparticles by pumpkin plants. J. Environ. Monit.
2008 , 10, 713-717.
124. Bennett, D.H.; McKone, T.E.; Evans, J.S.; Nazaroff, W.W.; Margni, M.D.;
Jolliet, O.; Smith, K.R. Defining intake fraction. Environ. Sci. Technol. 2002 , 36,
206A-211A.
125. Evans, J.S.; Wolff, S.K.; Phonboon, K.; Levy, J.I.; Smith, K.R. Exposure efficiency:
An idea whose time has come? Chemosphere 2002 , 49, 1075-1091.
Search WWH ::




Custom Search