Biomedical Engineering Reference
In-Depth Information
75. Brouwer, D. Exposure to manufactured nanoparticles in different workplaces.
Toxicology 2010 , 269, 120-127.
76. Kuhlbusch, T.A.J.; Asbach, C.; Fissan, H.; Gohler, D.; Stintz, M. Nanoparticle expo-
sure at nanotechnology workplaces: A review. Part. Fibre Toxicol. 2011 , 8 , 22-39.
77. Kaegi, R.; Ulrich, A.; Sinnet, B.; Vonbank, R.; Wichser, A.; Zuleeg, S.; Simmler, H.
et al. Synthetic TiO 2 nanoparticle emission from exterior facades into the aquatic
environment. Environ. Pollut. 2008 , 156, 233-239.
78. Fleury, D.; Bomfim, J.A.S.; Vignes, A.; Girard, C.; Metz, S.; Munoz, F.; R'Mili, B.;
Ustache, A.; Guiot, A.; Bouillard, J.X. Identification of the main exposure sce-
narios in the production of CNT-polymer nanocomposites by melt-moulding
process. J. Clean. Prod. 2011 , 1-15.
79. Raynor, P.C.; Cebula, J.I.; Spangenberger, J.S.; Olson, B.A.; Dasch, J.M.; D'Arcy,
J.B. Assessing potential nanoparticle release during nanocomposite shredding
using direct-reading instruments. J. Occup. Environ. Hyg. 2012 , 9, 1-13.
80. Warheit, D.B.; Webb, T.R.; Reed, K.L.; Frerichs, S.; Sayes, C.M. Pulmonary
toxicity study in rats with three forms of ultrafine-TiO2 2 particles: Differential
responses related to surface properties. Toxicology 2007 , 230, 90-104.
81. Boxall, A.B.A.; Chaudhry, Q.; Sinclair, C.; Jones, A.D.; Aitken, R.; Jefferson, B.;
Watts, C. Current and future predicted environmental exposure to engineered
nanoparticles. Central Science Laboratory: Sand Hutton, UK, 2007 .
82. Blaser, S.A.; Scheringer, M.; MacLeod, M.; Hungerbuhler, K. Estimation of
cumulative aquatic exposure and risk due to silver: Contribution of nano-
functionalized plastics and textiles. Sci. Total Environ. 2008 , 390, 396-409.
83. Park, B.; Donaldson, K.; Duffin, R.; Tran, L.; Kelly, F.; Mudway, I.; Morin, J. et al.
Hazard and risk assessment of a nanoparticulate cerium oxide-based diesel fuel
additive—A case study. Inhal. Toxicol. 2008 , 20, 547-566 .
84. Mueller, N.C. and Nowack, B. Exposure modeling of engineered nanoparticles
in the environment. Environ. Sci. Technol. 2008 , 42, 4447-4453.
85. O'Brien, N. and Cummins, E. Nano-scale pollutants: Fate in Irish surface and
drinking water regulatory systems. Hum. Ecol. Risk Assess. 2010 , 16, 847-872.
86. Gottschalk, F.; Sonderer, T.; Scholz, R.W.; Nowack, B. Modeled environmental
concentrations of engineered nanomaterials (TiO 2 , ZnO, Ag, CNT, fullerenes)
for different regions. Environ. Sci. Technol. 2009 , 43, 9216-9222.
87. Gottschalk, F.; Sonderer, T.; Scholz, R.W.; Nowack, B. Possibilities and limita-
tions of modeling environmental exposure to engineered nanomaterials by
probabilistic material flow analysis. Environ. Toxicol. Chem. 2010 , 29, 1036-1048.
88. Arvidsson, R.; Molander, S.; Sanden, B.A.; Hassellov, M. Challenges in exposure
modeling of nanoparticles in aquatic environments. Hum. Ecol. Risk Assess. 2011 ,
17, 245-262.
89. Hansen, S.F.; Michelson, E.S.; Kamper, A.; Borling, P.; Stuer-Lauridsen, F.;
Baun, A. Categorization framework to aid exposure assessment of nanomateri-
als in consumer products. Ecotoxicology 2008 , 17, 438-447.
90. Kohler, A.R.; Som, C.; Helland, A.; Gottschalk, F. Studying the potential release
of carbon nanotubes throughout the application life cycle. J. Clean. Prod. 2008 ,
16, 927-937.
91. Jimenez-Gonzalez, C.; Kim, S.; Overcash, M.R. Methodology for developing
gate-to-gate life cycle inventory information. Int. J. Life Cycle Assess. 2000 , 5,
153-160.
Search WWH ::




Custom Search