Biomedical Engineering Reference
In-Depth Information
43. Fthenakis, V.; Kim, H.C.; Gualtero, S.; Bourtsalas, A. Nanomaterials in PV man-
ufacture: Some life cycle environmental and health considerations. Conference
Record of the IEEE Photovoltaic Specialists Conference 2009 , 1068-1073.
44. Roes, A.L.; Alsema, E.A.; Blok, K.; Patel, M.K. Ex-ante environmental and eco-
nomic evaluation of polymer photovoltaics. Prog. Photovoltaics 2009 , 17, 372-393.
45. Greijer, H.; Karlson, L.; Lindquist, S.; Hagfeldt, A. Environmental aspects of
electricity generation from a nanocrystalline dye sensitized solar cell system.
Renew. Energy 2001 , 23, 27-39.
46. Osterwalder, N.; Capello, C.; Hungerbohler, K.; Stark, W.J. Energy consumption
during nanoparticle production: How economic is dry synthesis? J. Nanopart.
Res. 2006 , 8, 1-9.
47. Espinosa, N.; Garcia-Valverde, R.; Krebs, F.C. Life-cycle analysis of product inte-
grated polymer solar cells. Energy Environ. Sci. 2011 , 4, 1547-1557.
48. Espinosa, N.; Garcia-Valverde, R.; Urbina, A.; Krebs, F.C. A life cycle analysis of
polymer solar cell modules prepared using roll-to-roll methods under ambient
conditions. Solar Energy Mater. Solar Cells 2011 , 95, 1293-1302.
49. Lloyd, S.M.; Lave, L.B.; Matthews, H.S. Life cycle benefits of using nanotechnol-
ogy to stabilize platinum-group metal particles in automotive catalysts. Environ.
Sci. Technol. 2005 , 39, 1384-1392.
50. Moign, A.; Vardelle, A.; Themelis, N.J.; Legoux, J.G. Life cycle assessment of
using powder and liquid precursors in plasma spraying: The case of yttria-
stabilized zirconia. Surf. Coat. Technol. 2010 , 205, 668-673.
51. Krishnan, N.; Boyd, S.; Dornfeld, D.; Somani, A.; Raoux, S.; Clark, D. A hybrid
life cycle inventory of nano-scale semiconductor manufacturing. Environ. Sci.
Technol. 2008 , 42, 3069-3075.
52. Wen, D. Nanofuel as a potential secondary energy carrier. Energy Environ. Sci.
2010 , 3, 591-600.
53. Meyer, D.E.; Curran, M.A.; Gonzalez, M.A. An examination of existing data for
the industrial manufacture and use of nanocomponents and their role in the life
cycle impact of nanoproducts. Environ. Sci. Technol. 2009 , 43, 1256-1263.
54. Gavankar, S.; Suh, S.; Keller, A.F. Life cycle assessment at nanoscale: Review and
recommendations. Int. J. Life Cycle Assess. 2012 , 17, 295-303.
55. Steinfeldt, M. A method of prospective technological assessment of nanotechno-
logical techniques, In Towards Life Cycle Sustainability Management ; Finkbeiner,
M., ed.; Springer: The Netherlands, 2011 , pp. 131-140.
56. Upadhyayula, V.K.K.; Meyer, D.E.; Curran, M.A.; Gonzalez, M.A. Life cycle
assessment as a tool to enhance the environmental performance of carbon nano-
tube products: A review. J. Clean. Prod. 2012 , 26, 37-47.
57. Olsen, S.I. and Miseljic, M. Assessing potential nanoparticle release during
nanocomposite shredding using direct-reading instruments, In Symposium
“Safety Issues of Nanomaterials Along Their Life Cycle,” May 4-5, 2011, Barcelona,
Spain, 2011 .
58. Hischier, R. and Walser, T. Life cycle assessment of engineered nanomaterials:
State of the art and strategies to overcome existing gaps. Sci. Total Environ. 2012 ,
425, 271-282.
59. Hauschild, M.Z.; Huijbregts, M.; Jolliet, O.; Macleod, M.; Margni, M.;
Rosenbaum, R.K.; van de Meent, D.; McKone, T.E. Building a model based on
scientific consensus for life cycle impact assessment of chemicals: The search for
harmony and parsimony. Environ. Sci. Technol. 2008 , 42, 7032-7037.
Search WWH ::




Custom Search