Biomedical Engineering Reference
In-Depth Information
proposed for the modeling of chemical plants to the main nanomaterial
pathways. For impact assessment, it involves the use of physiologically
based pharmacokinetic models to interpolate results on well-studied
nanoparticles to different sizes and surface transformations.
• Screening factors need to be accompanied by uncertainty estimates,
at least for the main multiplicative factors determining both the
inventory emissions and the characterization factor. The inventories
and impact characterization factors calculated for nanoproducts and
nanoemissions must therefore be used in a way that reflects the large
variation of 10 orders of magnitude between chemical characteriza-
tion factors as well as the 3 orders of magnitude uncertainty on the
individual factors. It basically enables at this stage to screen whether
direct impacts of nanoparticles are negligible, comparable, or larger
than indirect impacts linked to, for example, fine particulate emis-
sions linked to energy production.
References
1. Jolliet, O.; Small, M.J. Integrated Environmental Assessment-Part IV Human
Health Risk Assessment. J. Ind. Ecol . 2010, 14, 188-191.
2. Shaked, S. and Jolliet, O. Global life cycle impacts of consumer products, In
Encyclopedia of Environmental Health , Volume 2; Nriagu, J.O., ed.; Elsevier:
Burlington, MA, 2011 , pp. 1002-1014.
3. International Organization for Standardization ISO 14040 International
Standard. In Environmental Management—Life Cycle Assessment—Principles and
Framework . Geneva, Switzerland, 2006 .
4. Frischknecht, R.; Jungbluth, N.; Althaus, H.; Doka, G.; Dones, R.; Heck, T.;
Hellweg, S. et al. The EcoInvent database: Overview and methodological frame-
work. Int. J. Life Cycle Assess. 2005 , 10 , 3-9.
5. Jolliet, O.; Margni, M.; Charles, R.; Humbert, S.; Payet, J.; Rebitzer, G.;
Rosenbaum, R. IMPACT 2002+: A new life cycle impact assessment methodol-
ogy. Int. J. Life Cycle Assess. 2003 , 8 , 324-330.
6. Hauschild, M.Z.; Goedkoop, M.; Guinée, J.; Heijungs, R.; Huijbregts, M.; Jolliet,
O.; Margni, M. et al. Identifying best existing practice for characterization mod-
elling in life cycle impact assessment. Int. J. Life Cycle Assess. 2013 , 18 , 683-697.
7. Rosenbaum, R.K.; Bachmann, T.M.; Gold, L.S.; Huijbregts, M.A.J.; Jolliet,  O.;
Juraske, R.; Koehler, A. et al. USEtox—The UNEP-SETAC toxicity model:
Recommended characterisation factors for human toxicity and freshwater eco-
toxicity in life cycle impact assessment. Int. J. Life Cycle Assess. 2008 , 13 , 532-546.
8. Rosenbaum, R.K.; Huijbregts, M.A.J.; Henderson, A.D.; Margni, M.; McKone,
T.E.; van de Meent, D.; Hauschild, M.Z.; Shaked, S.; Li, D.S.; Gold, L.S.; Jolliet,
O. USEtox human exposure and toxicity factors for comparative assessment of
toxic emissions in life cycle analysis: Sensitivity to key chemical properties. Int.
J. Life Cycle Assess. 2011 , 16 , 710-727.
Search WWH ::




Custom Search