Biomedical Engineering Reference
In-Depth Information
110. Rogers, N.J. et al. The importance of physical and chemical characterization in
nanoparticle toxicity studies. Integr. Environ. Assess. Manag. , 3, 303, 2007.
111. Blinova, I. et al. Ecotoxicity of nanoparticles of CuO and ZnO in natural water.
Environ Pollut ., DOI: 10.1016/j.envpol.2009.08.017, 158, 41, 2010.
112. Oberdörster, E. Manufactured nanomaterials (fullerenes, C 60 ) induce oxidative
stress in the brain of juvenile largemouth bass. Environ. Health Perspect. , 112,
1058, 2004.
113. Guo, J. et al. The different bio-effects of functionalized multi-walled carbon
nanotubes on Tetrahymena pyriformis . Curr. Nanosci. , 4, 240, 2008.
114. Fortner, J.D. et al. C 60 in water: Nanocrystal formation and microbial response.
Environ. Sci. Technol. , 39, 4307, 2005.
115. Li, D. et al. Effects of soil sorption and aquatic natural organic matter on the
antibacterial activity of a fullerene water suspension. Environ. Toxicol. Chem. , 27,
1888, 2008.
116. Henry, T.B. et al. Attributing effects of aqueous C 60 nano-aggregates to tetra-
hydrofuran decomposition products in larval zebrafish by assessment of gene
expression. Environ. Health Perspect. , 115, 1059, 2007.
117. Zogovic, N.S. et al. Opposite effects of nanocrystalline fullerene (C 60 ) on tumour
cell growth in vitro and in vivo and a possible role of immunosuppression in the
cancer-promoting activity of C60. Biomaterials , 30, 6940, 2009.
118. Lyon, D.Y. et al. Antibacterial activity of fullerene water suspensions: Effects of
preparation methods and particle size. Environ. Sci. Technol. , 40, 4360, 2006.
119. Johansen, A. et al. Effects of C 60 fullerene nanoparticles on soil bacteria and pro-
tozoans. Environ. Toxicol. Chem. , 27, 1895, 2008.
120. Zhu, S., Oberdörster, E., and Haasch, M.L. Toxicity of an engineered nanopar-
ticle (fullerene, C 60 ) in two aquatic species, Daphnia and fathead minnow. Mar.
Environ. Res. , 62 Suppl S, S5, 2006.
121. Oberdörster, E. et al. Ecotoxicology of carbon-based engineered nanoparticles:
effects of fullerene (C 60 ) on aquatic organisms. Carbon , 44, 1112, 2006.
122. Zhu, X. et al. Oxidative stress and growth inhibition in the freshwater fish
Carassius auratus induced by chronic exposure to sublethal fullerene aggregates.
Environ. Toxicol. Chem. , 27, 1979, 2008.
123. Blickley, M. and Mc-Clellan-Green, P., Toxicity of aqueous fullerene in adult and
larval Fundulus heteroclitus . Environ. Toxicol. Chem. , 27, 1964, 2008.
124. Chan-Remillard, S., Kapustka, L., and Goudey, S. Nano in nanotechnology does
size matter? In: 34th Annual Aquatic Toxicity Workshop , 30th Sept.-3rd October,
Halifax, Nova Scotia, 2007.
125. Hull, M.S. et al. Release of metal impurities from carbon nanomaterials influ-
ences aquatic toxicity. Environ. Sci. Technol. , 43, 4169, 2009.
126. Zhu, X. et al. Developmental toxicity in zebrafish ( Danio rerio ) embryos after
exposure to manufactured nanomaterials: Buckminsterfullerene aggregates
(nC 60 ) and fullerol. Environ. Toxicol. Chem. , 26, 976, 2007.
127. Templeton, R.C. et al. Life-cycle effects of single-walled carbon nanotubes
(SWNTs) on an estuarine meiobenthic copepod. Environ. Sci. Technol. , 40, 7387,
2006.
128. Roberts, A.P. et al. In vivo biomodification of lipid-coated carbon nanotubes by
Daphnia magna . Environ. Sci. Technol. , WEB, A, 2007.
129. Cheng, J., Flahaut, E., and Cheng, S.H. Effects of carbon nanotubes on develop-
ing zebrafish ( Danio rerio ) embryos. Environ. Toxicol. Chem. , 26, 708, 2007.
Search WWH ::




Custom Search