Biomedical Engineering Reference
In-Depth Information
21. Proll G. and Gauglitz G. Nanostructured environmental biochemical sensor for
water monitoring, presented at Nanotechnology and the Environment work-
shop, Brussels, Belgium, March 30-31, 2006, 5.
22. United States Environmental Protection Agency Nanotechnology White Paper . United
States Environmental Protection Agency: Washington, DC, 2007; Available
online: http://www.epa.gov/osa/pdfs/nanotech/epa-nanotechnology-white-
paper-0207.pdf (accessed December 2, 2009).
23. Databases of Innovative Technologies. United States Environmental Protection
Agency: Washington, DC, 2003; Available online: http://www.epa.gov/tio/
databases/ (accessed December 2, 2009).
24. Zhang W. Nanoscale iron particles for environmental remediation: An over-
view, J. Nanopart. Res. , 5, 323-332, 2003. With permission.
25. Watlington K. Emerging Nanotechnologies for Site Remediation and Wastewater
Treatment . North Carolina State University: Raleigh, NC, 2005; Available online:
http://www.clu-in.org/download/techdrct/K_Watlington_Nanotech.pdf
(accessed December 2, 2009).
26. Tratnyek P. and Johnson R. Nanotechnologies for environmental cleanup,
Nanotoday , 1, 44-48, 2006.
27. Latif B. Nanotechnology for Site Remediation: Fate and Transport of Nanoparticles in
Soil and Water Systems. University of Arizona: Tucson, AZ, 2006; Available online:
http://www.clu-in.org/download/studentpapers/B_Latif_Nanotechology.
pdf (accessed December 2, 2009).
28. Beck B. and Cocoros M. Use of nanoscale zero-valent iron (nZVI) particles for
groundwater remediation: A qualitative risk assessment, presented at 22nd
Annual International Conference on Soils, Sediments and Water , Amherst, October
16-19, 2006, 3.
29. Nowack B. Environmental behavior and effects of engineered metal and metal
oxide nanoparticles, in Heavy Metals in the Environment , Lawrence K. et al., Eds.,
Taylor & Francis and CRC Press, New York, 2009, Chap. 3.
30. Nagaveni K. et al. Photocatalytic degradation of organic compounds over
combustion-synthesized nano-TiO 2 , Environ. Sci. Technol. , 38, 1600-1604, 2004.
31. Hoffmann M.R. et al. Environmental applications of semiconductor photoca-
talysis, Chem. Rev. , 95, 69-96, 1995.
32. Rajeshwar K. et al. Titania-based heterogeneous photocatalysis. Materials,
mechanistic issues and implications for environmental remediation, J. Pure
Appl. Chem. , 73, 1849-1860, 2001.
33. Chen Y. et al. Preparation of a novel TiO 2 -based p-n junction nanotube photo-
catalyst, Environ. Sci. Technol. , 39, 1201-1208, 2005.
34. Mueller N. and Nowack B. Exposure modeling of engineered nanoparticles in
the environment, Environ. Sci. Technol. , 42, 4447, 2008.
35. Boxall AB et al. Engineered nanomaterials in soils and water: How do they
behave and could they pose a risk to human health? Nanomedicine , 2, 919-927,
2007.
36. Tungittiplakorn W. et al. Engineered polymeric nanoparticles for soil remedia-
tion, Environ. Sci. Technol. , 38, 1605-1610, 2005.
37. Yeom I., Ghosh M., and Cox C. Kinetic aspects of surfactant solubilization of
soil-bound polycyclic aromatic hydrocarbons, Environ. Sci. Technol. , 30, 1589-
1595, 1996.
Search WWH ::




Custom Search