Biology Reference
In-Depth Information
Hopkins, D. W., Webster, E. A., Boerjan, W., Pilate, G. and Halpin, C. (2007).
Genetically modified lignin below ground. Nature Biotechnology 25, 168-169.
Horvath, L., Peszlen, I., Peralta, P., Kasal, B. and Li, L. (2010). Mechanical proper-
ties of genetically engineered young aspen with modified lignin content and/
or structure. Wood and Fiber Science 42, 310-317.
Hu, W., Kawaoka, A., Tsai, C., Lung, J., Osakabe, K., Ebinuma, H. and
Chiang, V. L. (1998). Compartmentalized expression of two structurally
and functionally distinct 4-coumarate:CoA ligase genes in aspen (Populus
tremuloides). Proceedings of the National Academy of Sciences of the United
States of America 95, 5407-5412.
Hu, W. J., Harding, S. A., Lung, J., Popko, J. L., Ralph, J., Stokke, D. D., Tsai, C. J.
and Chiang, V. L. (1999). Repression of lignin biosynthesis promotes
cellulose accumulation and growth in transgenic trees. Nature Biotechnology
17, 808-812.
Humphreys, J. M., Hemm, M. R. and Chapple, C. (1999). New routes for lignin
biosynthesis defined by biochemical characterization of recombinant feru-
late 5-hydroxylase, a multifunctional cytochrome P450-dependent monoox-
ygenase. Proceedings of the National Academy of Sciences of the United
States of America 96, 10045-10050.
Huntley, S. K., Ellis, D., Gilbert, M., Chapple, C. and Mansfield, S. D. (2003).
Significant increases in pulping efficiency in C4H-F5H-transformed poplars:
Improved chemical savings and reduced environmental toxins. Journal of
Agricultural and Food Chemistry 51, 6178-6183.
Ipek¸i, Z., Ogras, T., Altlnkut, A., Bajrovic, K., Kazan, K., G¨ z¨kirmizi, N.,
Boydak, M., Tank, T., Akalp, T., ¨ zden, O., ¸ alikoglu, M.,
Tun¸taner, K. et al. (1999). Reduced leaf peroxidase activity is associated
with reduced lignin content in transgenic poplar. Plant Biotechnology 16,
381-387.
Jia, C., Zhao, H., Wang, H., Xing, Z., Du, K., Song, Y. and Wei, J. (2004). Obtaining
the transgenic poplars with low lignin content through down-regulation of
4CL. Chinese Science Bulletin 49, 905-909.
Jouanin, L., Goujon, T., Denadai, V., Martin, M. T., Mila, I., Vallet, C., Pollet, B.,
Yoshinaga, A., Chabbert, B., Petitconil, M. and Lapierre, C. (2000). Ligni-
fication in transgenic poplars with extremely reduced caffeic acid O-methyl-
transferase activity. Plant Physiology 123, 1363-1373.
Kawaoka, A., Nanto, K., Ishii, K. and Ebinuma, H. (2006). Reduction of lignin
content by suppression of expression of the LIM domain transcription
factor in Eucalyptus camaldulensis. Silvae Genetica 55, 269-277.
Kenrick, P. and Crane, P. R. (1997). The origin and early evolution of plants on land.
Nature 389, 33-39.
Kitin, P., Voelker, S. L., Meinzer, F. C., Beeckman, H., Strauss, S. H. and
Lachenbruch, B. (2010). Tyloses and phenolic deposits in xylem vessels
impede water transport in low-lignin transgenic poplars: A study by cryo-
fluorescence microscopy. Plant Physiology 154, 887-898.
Koehler, L. and Telewski, F. W. (2006). Biomechanics and transgenic wood. Ameri-
can Journal of Botany 93, 1433-1438.
Lapierre, C., Pollet, B., Petit-Conil, M., Toval, G., Romero, J., Pilate, G., Lepl´, J. C.,
Boerjan, W., Ferret, V., Nadai, V. D. and Jouanin, L. (1999). Structural
alterations of lignins in transgenic poplars with depressed cinnamyl alcohol
dehydrogenase or caffeic acid O-methyltransferase activity have an opposite
impact on the efficiency of industrial kraft pulping. Plant Physiology 119,
153-163.
Search WWH ::




Custom Search