Biology Reference
In-Depth Information
Friedman, W. E. and Cook, M. E. (2000). The origin and evolution of tracheids in
vascular plants. Philosophical Transactions of the Royal Society of London B
355 , 857-868.
Fukushima, K. and Terashima, N. (1991). Heterogeneity in formation of lignin part
XV: Formation and structure of lignin in compression wood of Pinus
thunbergii studied by microautoradiography. Wood Science and Technology
25 , 371-381.
Gabald´n, C., L´pez-Serrano, M., Pedre˜o, M. A. and Ros Barcel´ , A. (2005).
Cloning and molecular characterization of the basic peroxidase isoenzyme
from Zinnia elegans, an enzyme involved in lignin biosynthesis. Plant Physi-
ology 139 , 1138-1154.
Gayoso, C., Pomar, F., Novo-Uzal, E., Merino, F. and de Il´rduya, O. M. (2010).
The Ve-mediated resistance response of the tomato to Verticillium dahliae
involves H 2 O 2 , peroxidase and lignins and drives PAL gene expression.
BMC Plant Biology 10 , 232.
Gerhart, J. and Kirschner, M. (1997). Cells, Embryos and Evolution. Toward a
Cellular and Developmental Understanding of Phenotypic Variation and
Evolutionary Adaptability. Blackwell Science Inc., Malden, MA, USA.
G ´ mez Ros, L. V., Aznar-Asensio, G., Hern ´ ndez, J. A., Bernal, M. A., N ´˜ ez-
Flores, M. J. L., Cuello, J. and Ros Barcel ´ , A. (2007a). Structural motifs of
syringyl peroxidases are conserved during angiosperm evolution. Journal of
Agricultural and Food Chemistry 55 , 4131-4138.
G´mez Ros, L. V., Gabald´n, C., Pomar, F., Merino, F., Pedre˜o, M. A. and Ros
Barcel´ , A. (2007b). Structural motifs of syringyl peroxidases pre-date not
only the gymnosperm-angiosperm divergence but also the radiation of
tracheophytes. New Phytologist 173 , 63-78.
Gould, S. J. (2002). The Structure of Evolutionary Theory. Harvard University Press,
Cambridge.
Grabber, J. H. and Lu, F. (2007). Formation of syringyl-rich lignins in maize as
influenced by feruloylated xylans and p-coumaroylated monolignols. Planta
226 , 741-751.
Grabber, J. H., Ralph, J. and Hatfield, R. D. (1998). Ferulate cross-links limit the
enzymatic degradation of synthetically lignified primary walls of maize.
Journal of Agricultural and Food Chemistry 46 , 2609-2614.
Grabber, J. H., Ralph, J. and Hatfield, R. D. (2002). Model studies of ferulate-
coniferyl alcohol cross-product formation in primary maize walls: Implica-
tions for lignification in grasses. Journal of Agricultural and Food Chemistry
50 , 6008-6016.
Graham, L. E. (1993). Origin of the Land Plants. Wiley, New York.
Graham, L. E. (1996). Green algae to land plants: An evolutionary transition. Journal
of Plant Research 109 , 241-251.
Graham, L. E., Wilcox, L. W., Cook, M. E. and Gensel, P. G. (2004). Resistant
tissues of modern marchantioid liverworts resemble enigmatic Early Paleo-
zoic microfossils. Proceedings of the National Academy of Sciences of the
United States of America 101 , 11025-11029.
Gross, G. G. (1980). The biochemistry of lignification. Advances in Botanical Research
8 , 25-63.
Gunnison, D. and Alexander, M. (1975). Basis for the resistance of several algae to
microbial decomposition. Applied Microbiology 29 , 729-738.
Hatfield, R. D., Wilson, J. R. and Mertens, D. R. (1999). Composition of cell walls
isolated from cell types of grain sorghum stems. Journal of the Science of
Food and Agriculture 79 , 891-899.
Search WWH ::




Custom Search