Biology Reference
In-Depth Information
the methyl-esterification pattern of homogalacturonans. Annals of Botany
105 , 481-491.
Druart, N., Rodriguez-Buey, M., Barron-Gafford, G., Sjodin, A., Bhalerao, R. and
Hurry, V. (2006). Molecular targets of elevated [CO2] in leaves and stems of
Populus deltoides: Implications for future tree growth and carbon seques-
tration. Functional Plant Biology 33 , 121-131.
Eckey-Kaltenbach, H., Ernst, D., Heller, W. and Sandermann, H. J. (1994). Biochemi-
cal plant responses to ozone. IV. Cross-induction of defensive pathways in
Parsley (Petroselinum crispum L.) plants. Plant Physiology 104 , 67-74.
Ehlting, J., Mattheus, N., Aeschliman, D. S., Li, E. Y., Hamberger, B., Cullis, I. F.,
Zhuang, J., Kaneda, M.,Mansfield, S. D., Samuels, L., Ritland, K., Ellis, B. E.
et al. (2005). Global transcript profiling of primary stems from Arabidopsis
thaliana identifies candidate genes for missing links in lignin biosynthesis and
transcriptional regulators of fiber differentiation. Plant Journal 42 , 618-640.
Entry, J. A., Runion, G. B., Prior, S. A., Mitchell, R. J. and Rogers, H. H. (1998).
Influence of CO 2 enrichment and nitrogen fertilization on tissue chemistry
and carbon allocation in longleaf pine seedlings. Plant and Soil 200 , 3-11.
Evans, N. H., McAinsh, M. R., Hetherington, A. M. and Knight, M. R. (2005). ROS
perception in Arabidopsis thaliana: The ozone-induced calcium response.
Plant Journal 41 , 615-626.
Fan, L., Linker, R., Gepstein, S., Tanimoto, E., Yamamoto, R. and Neumann, P. M.
(2006). Progressive inhibition by water deficit of cell wall extensibility and
growth along the elongation zone of maize roots is related to increased
lignin metabolism and progressive stelar accumulation of wall phenolics.
Plant Physiology 140 , 603-612.
Finger-Teixeira, A., Lucio Ferrarese, M.d.L., Soares, A. R., da Silva, D. and Ferrarese-
Filho, O. (2010). Cadmium-induced lignification restricts soybean root
growth. Ecotoxicology and Environmental Safety 73 , 1959-1964.
Finzi, A. C. and Schlesinger, A. H. (2002). Species control variation in litter decom-
position in a pine forest exposed to elevated CO 2 . Global Change Biology 8 ,
1217-1229.
Finzi, A. C., Norby, R. J., Calfapietra, C., Gallet-Budynek, A., Gielen, B.,
Holmes, W. E., Hoosbeek, M. R., Iversen, C. M., Jackson, R. B.,
Kubiske, M. E., Ledford, J., Liberloo, M. et al. (2007). Increases in nitrogen
uptake rather than nitrogen-use efficiency support higher rates of temperate
forest productivity under elevated CO 2 . Proceedings of the National Acade-
my of Sciences of the United States of America 104 , 14014-14019.
Foyer, C. H. and Noctor, G. (2005). Oxidant and antioxidant signalling in plants:
A re-evaluation of the concept of oxidative stress in a physiological context.
Plant, Cell and Environment 28 , 1056-1071.
Francini, A., Nali, C., Pellegrini, E. and Lorenzini, G. (2008). Characterization and
isolation of some genes of the shikimate pathway in sensitive and resistant
Centaurea jacea plants after ozone exposure. Environmental Pollution 151 ,
272-279.
Frankenstein, C., Schmitt, U. and Koch, G. (2006). Topochemical studies on modified
lignin distribution in the xylem of poplar (Populus spp.) after wounding.
Annals of Botany 97 , 195-204.
Frei, M., Makkar, H. P. S., Becker, K. and Wissuwa, M. (2010). Ozone exposure
during growth affects the feeding value of rice shoots. Animal Feed Science
and Technology 155 , 74-79.
Frei, M., Kohno, Y., Wissuwa, M., Makkar, H. P. S. and Becker, K. (2011). Negative
effects of tropospheric ozone on the feed value of rice straw are mitigated by
an ozone tolerance QTL. Global Change Biology 17 , 2319-2329.
Search WWH ::




Custom Search