Biology Reference
In-Depth Information
Wagner, A., Phillips, L., Narayan, R. D., Moody, J. M. and Geddes, B. (2005). Gene
silencing studies in the gymnosperm species Pinus radiata. Plant Cell Reports
24, 95-102.
Wagner, A., Ralph, J., Akiyama, T., Flint, H., Phillips, L., Torr, K., Nanayakkara, B.
and Te Kiri, L. (2007). Exploring lignification in conifers by silencing
hydroxycinnamoyl-CoA: Shikimate hydroxycinnamoyltransferase in Pinus
radiata. Proceedings of the National Academy of Sciences of the United States
of America 104, 11856-11861.
Wagner, A., Donaldson, L., Kim, H., Flint, H., Phillips, L., Steward, D., Torr, K.,
Koch, G., Schmitt, U. and Ralph, J. (2009). Suppression of 4-coumarate-
CoA ligase in the coniferous gymnosperm Pinus radiata. Plant Physiology
149, 370-383.
Wagner, A., Tobimatsu, Y., Phillips, L., Flint, H., Torr, K., Donaldson, L., Pears, L.
and Ralph, J. (2011). CCoAOMT suppression modifies lignin composition
in Pinus radiata. The Plant Journal 67, 119-129.
Wardrop, A. B. and Bland, D. E. (1959). The process of lignification in woody plants.
Fourth International Congress of Biochemistry. In Biochemistry of Wood,
(K. Kratzl, G. Billek, eds.), Vol. II, pp. 92-116. Pergamon Press, New York.
Weng, J.-K. and Chapple, C. (2010). The origin and evolution of lignin biosynthesis.
New Phytologist 187, 273-285.
Weng, J.-K., Akiyama, T., Bonawitz, N. D., Li, X., Ralph, J. and Chapple, C. (2010).
Convergent evolution of syringyl lignin biosynthesis via distinct pathways in
the lycophyte Selaginella and flowering plants. The Plant Cell 22, 1033-1045.
Weng, J.-K., Akiyama, T., Ralph, J., Golden, B. L. and Chapple, C. (2011). Indepen-
dent recruitment of an O-methyltransferase for syringyl lignin biosynthesis
in Selaginella moellendorffii. The Plant Cell 23, 2708-2724.
Westermark, U. (1985). The occurrence of p-hydroxyphenylpropane units in the
middle lamella lignin of spruce (Picea abies). Wood Science and Technology
19, 223-232.
Whiting, P. and Goring, D. A. I. (1982a). Chemical characterization of tissue frac-
tions from the middle lamella and secondary wall of spruce tracheids. Wood
Science and Technology 16, 261-267.
Whiting, P. and Goring, D. A. I. (1982b). Relative reactivities of middle lamella and
secondary wall lignin of black spruce wood. Holzforschung 36, 303-306.
Winkel-Shirley, B. (1999). Evidence for enzyme complexes in the phenylpropanoid
and flavonoid pathways. Physiologia Plantarum 107, 142-149.
Wood, J. R. and Goring, D. A. I. (1974). Ultraviolet microscopy at wavelengths
below 240 nm. Journal of Microscopy 100, 105-111.
Xie, Y. M., Robert, D. R. and Terashima, N. (1994). Selective carbon 13 enrichment
of side chain carbons of ginkgo lignin traced by carbon 13 nuclear magnetic
resonance. Plant Physiology and Biochemistry 32, 243-249.
Yang, J. M. and Goring, D. A. I. (1980). The phenolic hydroxyl content of lignin in
spruce wood. Canadian Journal of Chemistry 58, 2411-2414.
Yumoto, M., Ishida, S. and Fukazawa, K. (1982). Studies on the formation and
structure of the compression wood cells induced by artificial inclination in
young trees of Picea glauca I. Time course of the compression wood forma-
tion following inclination. Research Bulletin of the College Experiment
Forests 39, 137-162. Hokkaido University.
Zhang, X.-H. and Chiang, V. L. (1997). Molecular cloning of 4-coumarate: Coen-
zyme-A ligase in loblolly pine and the roles of this enzyme in the biosynthe-
sis of lignin in compression wood. Plant Physiology 113, 65-74.
Zhao, Q. and Dixon, R. A. (2011). Transcriptional networks for lignin biosynthesis:
More complex than we thought? Trends in Plant Science 16, 227-233.
Search WWH ::




Custom Search