Biology Reference
In-Depth Information
middle lamella and secondary wall of Norway spruce (Picea abies). Wood
Science and Technology 20, 35-52.
Sterjiades, R., Dean, J. F. D., Gamble, G., Himmelsbach, D. S. and Eriksson, K.-
E. L. (1993). Extracellular laccases and peroxidases from sycamore maple
(Acer pseudoplatanus) cell suspension cultures. Reactions with monolignols
and lignin model compounds. Planta 190, 75-87.
Stewart, J. J., Akiyama, T., Chapple, C., Ralph, J. and Mansfield, S. D. (2009). The
effects on lignin structure of overexpression of ferulate 5-hydroxylase in
hybrid poplar. Plant Physiology 150, 621-635.
Studer, M. H., DeMartini, J. D., Davis, M. F., Sykes, R. W., Davison, B., Keller, M.,
Tuskan, G. A. and Wyman, C. E. (2011). Lignin content in natural populus
variants affects sugar release. Proceedings of the National Academy of
Sciences of the United States of America 108, 6300-6305.
Takabe, K., Fujita, M., Harada, H. and Saiki, H. (1981). Lignification process of
Japanese black pine (Pinus thunbergii Parl.) tracheids. Mokuzai Gakkaishi
27, 813-820.
Terashima, N. and Fukushima, K. (1988). Heterogeneity in formation of lignin XI:
An autoradiographic study of the heterogeneous formation and structure of
pine lignin. Wood Science and Technology 22, 259-270.
Terashima, N., Fukushima, K., Sano, Y. and Takabe, K. (1988). Heterogeneity in
formation of lignin X: Visualization of lignification process in differentiat-
ing xylem of pine by microautoradiography. Holzforschung 42, 347-350.
Terashima, N., Atalla, R. H., Ralph, S. A., Landucci, L. L., Lapierre, C. andMonties, B.
(1995). New preparations of lignin polymer models under conditions that
approximate cell wall lignification. I. Synthesis of novel polymer models and
their structural characterization by 13 C NMR. Holzforschung 49, 521-527.
Terashima, N., Akiyama, T., Ralph, S. A., Evtuguin, D., Pascoal Neto, C., Park˚s, J.,
Paulsson, M., Westermark, U. and Ralph, J. (2009). 2D-NMR (HSQC)
difference spectra between specifically 13 C-enriched and unenriched proto-
lignin of Ginkgo biloba obtained in the solution-state of whole cell wall
material. Holzforschung 63, 379-384.
Timell, T. E. (1973). Studies on opposite wood in conifers Part III: Distribution of
lignin. Wood Science and Technology 7, 163-172.
Timell, T. E. (1986). Bibliography, historical background, determination, structure,
chemistry, topochemistry, physical properties, origin and formation of
compression wood. In Compression Wood in Gymnosperms Springer Ver-
lag, New York, NY.
Tsutsumi, Y., Matsui, K. and Sakai, K. (1998). Substrate-specific peroxidases in
woody angiosperms and gymnosperms participate in regulating the dehy-
drogenative polymerisation of syringyl and guaiacyl type lignins. Holz-
forschung 52, 275-281.
Umezawa, T. (2010). The cinnamate/monolignol pathway. Phytochemistry Reviews 9,
1-17.
Vanholme, R., Morreel, K., Ralph, J. and Boerjan, W. (2008). Lignin engineering.
Current Opinion in Plant Biology 11, 278-285.
Wadenb ¨ ck, J., von Arnold, S., Egertsdotter, U., Walter, M. H., Grima-Pettenati, J.,
Goffner, D., Gellerstedt, G., Gullion, T. and Clapham, D. (2008). Lignin
biosynthesis in transgenic Norway spruce plants harbouring an antisense
construct for cinnamoyl CoA reductase (CCR). Transgenic Research 17,
379-392.
Wagner, A. and Walter, C. (2004). Promoter studies in conifers. In Plantation Forest
Biotechnology for the 21st century, (C. Walter and M. Carson, eds.),
pp. 231-240. Research Signpost, Kerala, India.
Search WWH ::




Custom Search