Biology Reference
In-Depth Information
Grabber, J. H., Hatfield, R. D., Lu, F. and Ralph, J. (2008). Coniferyl ferulate
incorporation into lignin enhances the alkaline delignification and enzymat-
ic degradation of cell walls. Biomacromolecules 9, 2510-2516.
Grabber, J. H., Schatz, P. F., Kim, H., Lu, F. and Ralph, J. (2010). Identifying new
lignin bioengineering targets: 1. Monolignol substitute impacts on lignin
formation and cell wall fermentability. BMC Plant Biology 10, art. no. 114.
Guan, S.-Y., Mlyn´r, J. and Sarkanen, S. (1997). Dehydrogenative polymerisation of
coniferyl alcohol on macromolecular lignin templates. Phytochemistry 45,
911-918.
Halpin, C. (2004). Redesigning lignin for industry and agriculture. Biotechnology and
Genetic Engineering Reviews 1, 229-245.
Harris, P. J. (2006). Primary and secondary plant cell walls: A comparative overview.
New Zealand Journal of Forestry Science 36, 36-53.
Higuchi, T. (2006). Look back over the studies of lignin biochemistry. Journal of
Wood Science 52, 2-8.
Hoffmann, L., Maury, S., Martz, F., Geoffroy, P. and Legrand, M. (2003). Purifica-
tion, cloning, and properties of an acyltransferase controlling shikimate and
quinate ester intermediates in phenylpropanoid metabolism. Journal of
Biological Chemistry 278, 95-103.
Humphreys, J. M., Hemm, M. R. and Chapple, C. (1999). Ferulate 5-hydroxylase
from Arabidopsis is a multifunctional cytochrome P450-dependent mono-
oxygenase catalyzing parallel hydroxylations in phenylpropanoid metabo-
lism. Proceedings of the National Academy of Sciences of the United States of
America 96, 10045-10050.
Huntley, S. K., Ellis, D., Gilbert, M., Chapple, C. and Mansfield, S. D. (2003).
Significant increases in pulping efficiency in C4H-F5H-transformed poplars:
Improved chemical savings and reduced environmental toxins. Journal of
Agricultural and Food Chemistry 51, 6178-6183.
Jourdes, M., Cardenas, C. L., Laskar, D. D., Moinuddin, S. G. A., Davin, L. B. and
Lewis, N. G. (2007). Plant cell walls are enfeebled when attempting to
preserve native lignin configuration with poly-p-hydroxycinnamaldehydes:
Evolutionary implications. Phytochemistry 68, 1932-1956.
Kaneda, M., Rensing, K. H., Wong, J. C. T., Banno, B., Mansfield, S. D. and
Samuels, A. L. (2008). Tracking monolignols during wood development in
lodgepole pine. Plant Physiology 147, 1750-1760.
K¨rk ¨nen, A. and Koutaniemi, S. (2010). Lignin biosynthesis studies in plant tissue
cultures. Journal of Integrative Plant Biology 52, 176-185.
Kim, Y.-S. and Koh, H.-B. (1997). Immuno electron microscopic study on the origin
of milled wood lignin. Holzforschung 51, 411-413.
Kim, S.-J., Kim, M.-R., Bedgar, D. L., Moinuddin, S. G. A., Cardenas, C. L.,
Davin, L. B., Kang, C. and Lewis, N. G. (2004). Functional reclassification
of the putative cinnamyl alcohol dehydrogenase multigene family in Arabi-
dopsis. Proceedings of the National Academy of Sciences of the United States
of America 101, 1455-1460.
Kim, J. S., Awano, T., Yoshinaga, A. and Takabe, K. (2010). Immunolocalization of
b
-1-4-galactan and its relationship with lignin distribution in developing
compression wood of Cryptomeria japonica. Planta 232, 109-119.
Kim, J. S., Awano, T., Yoshinaga, A. and Takabe, K. (2011). Occurrence of xylan
and mannan polysaccharides and their spatial relationship with other cell
wall components in differentiating compression wood tracheids of Crypto-
meria japonica. Planta 233, 721-735.
Koutaniemi, S., Warinowski, T., K¨r¨nen, A., Alatalo, E., Fossdal, C. G.,
Saranp¨¨ , P., Lookso, T., Fagerstedt, K. V., Simola, L. K., Paulin, L.,
Search WWH ::




Custom Search