Biology Reference
In-Depth Information
Bonawitz, N. D. and Chapple, C. (2010). The genetics of lignin biosynthesis:
Connecting genotype to phenotype. Annual Review of Genetics 44, 337-363.
Boudet, A. M. (2007). Evolution and current status of research in phenolic com-
pounds. Phytochemistry 68, 2722-2735.
Boudet, A. M., Kajita, S., Grima-Pettenati, J. and Goffner, D. (2003). Lignins and
lignocellulosics: A better control of synthesis for new and improved uses.
Trends in Plant Science 8, 576-581.
Brunow and Lundquist, 2010Brunow, G. and Lundquist, K. (2010). Functional
groups and bonding patterns in lignin. In Lignin and Lignans,
(C.Heitner,D.DimmelandJ.A.Schmidt,eds.),pp.267-300.CRC
Press, Boca Raton, FL.
Campbell, M. M. and Sederoff, R. R. (1996). Variation in lignin content and compo-
sition: Mechanisms of control and implications for the genetic improvement
of plants. Plant Physiology 110, 3-13.
Carnachan, S. M. and Harris, P. J. (2000). Ferulic acid is bound to the primary cell
walls of all gymnosperm families. Biochemical Systematics and Ecology 28,
865-879.
Chabannes, M., Barakate, A., Lapierre, C., Marita, J. M., Ralph, J., Pean, M.,
Danoun, S., Halpin, C., Grima-Pettenati, J. and Boudet, A. M. (2001).
Strong decrease in lignin content without significant alteration of plant
development is induced by simultaneous down-regulation of cinnamoyl-
CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in
tobacco plants. The Plant Journal 28, 257-270.
Chen, F., Srinivasa Reddy, M. S., Temple, S., Jackson, L., Shadle, G. and
Dixon, R. A. (2006). Multi-site genetic modulation of monolignol biosyn-
thesis suggests new routes for formation of syringyl lignin and wall-bound
ferulic acid in alfalfa (Medicago sativa L.). The Plant Journal 48, 113-124.
Chiang, V. L. (2006). Monolignol biosynthesis and genetic engineering of lignin in
trees, a review. Environmental Chemistry Letters 4, 143-146.
Core, H. A., Cˆ t´, W. A. and Day, A. C. (1979). Wood Structure and Identification.
Syracuse University Press, New York, NY, 182 pp.
Cˆ t´, W. A., Day, A. C. and Timell, T. E. (1968). Studies on compression wood VII.
Distribution of lignin in normal and compression wood of tamarack Larix
laricina (Du Roi, K.Koch). Wood Science and Technology 2, 13-37.
Czaninski, Y., Sachot, R. M. and Catesson, A. M. (1993). Cytochemical localization
of hydrogen peroxide in lignifying cell walls. Annals of Botany 72, 547-550.
Dauwe, R., Morreel, K., Goeminne, G., Gielen, B., Rohde, A., Van Beeumen, J.,
Ralph, J., Boudet, A.-M., Kopka, J., Rochange, S. F., Halpin, C.,
Messens, E. et al. (2007). Molecular phenotyping of lignin-modified tobacco
reveals associated changes in cell-wall metabolism, primary metabolism,
stress metabolism and photorespiration. The Plant Journal 52, 263-285.
Davin, L. B. and Lewis, N. G. (2005). Lignin primary structures and dirigent sites.
Current Opinion in Biotechnology 16, 407-415.
Deighton, N., Richardson, A., Stewart, D. and McDougall, G. J. (1999). Cell-wall
associated oxidases from the lignifying xylem of angiosperms and gymnos-
perms: Monolignol oxidation. Holzforschung 53, 503-510.
Dixon, R. A., Xie, D.-Y. and Sharma, S. B. (2005). Proanthocyanidins—A final
frontier in flavonoid research? New Phytologist 165, 9-28.
Do, C.-T., Pollet, B., Th´venin, J., Sibout, R., Denoue, D., Barri`re, Y., Lapierre, C.
and Jouanin, L. (2007). Both caffeoyl Coenzyme A 3-O-methyltransferase 1
and caffeic acid O-methyltransferase 1 are involved in redundant functions
for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis.
Planta 226, 1117-1129.
Search WWH ::




Custom Search