Digital Signal Processing Reference
In-Depth Information
Hence,( 1.6 ) is rewritten as
π
exp j 2 π( x cos θ + y sin θ) U
f
(
x
,
y
) =
G
(
U
,θ)
|
U
|
dUd
θ
(1.7)
π
0
From ( 1.1 ), we get R
(
l
,θ) =
R
(
l
+ π)
. This implies
(
,θ) =
(
+ π)
G
U
G
U
(1.8)
Splitting ( 1.7 )intotwoterms,
I-term:
0
exp j 2 π( x cos θ + y sin θ) U
G
(
U
,θ)
|
U
|
dUd
θ
(1.9)
π
−∞
II-term:
π
exp j 2 π( x cos θ + y sin θ) U
(
,θ)
|
|
θ
G
U
U
dUd
(1.10)
0
0
Change the variable
φ = θ + π
and U 1
=−
U in the first term ( 1.9 ), we get
π
exp j 2 π( x cos φ + y sin φ) U 1
G
(
U 1
π)
|
U 1
|
dU 1 d
φ
(1.11)
0
0
Using ( 1.7 )-( 1.11 ), we get
π
exp j 2 π( x cos φ + y sin φ) U 1
f
(
x
,
y
) =
2
G
(
U 1
π + π)
|
U 1
|
dU 1 d
φ.
0
0
(1.12)
Replacing the dummy variables U 1 and
φ
with U and
θ
respectively in ( 1.12 )
and writing the second limit ranging from
−∞
to
, we get the following.
π
exp j 2 π( x cos θ + y sin θ) U
f
(
x
,
y
) =
2
(
1
/
2
)
G
(
U
,θ)
|
U
|
dUd
θ
(1.13)
0
−∞
Let l
=
x cos
θ +
y sin
θ
. Thus rewriting ( 1.12 )asfollows.
π
exp j 2 π lU
f
(
x
,
y
) =
G
(
U
,θ)
|
U
|
dUd
θ
(1.14)
−∞
0
Search WWH ::




Custom Search