Biology Reference
In-Depth Information
Pietsch, D., Staiger, D., Pistorius, E. K., & Michel, K. P. (2007). Characterization of the puta-
tive iron sulphur protein IdiC (ORF5) in Synechococcus elongatus PCC 7942. Photosyn-
thesis Research , 94 , 91-108.
Pils, D., & Schmetterer, G. (2001). Characterization of three bioenergetically active respira-
tory terminal oxidases in the cyanobacterium Synechocystis sp. strain PCC 6803. FEMS
Microbiology Letters , 203 (2), 217-222.
Pohl, E., Haller, J. C., Mijovilovich, A., Meyer-Klaucke, W., Garman, E., &Vasil, M. L. (2003).
Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic
analysis of the ferric uptake regulator. Molecular Microbiology , 47 , 903-915.
Poncelet, M., Cassier-Chauvat, C., Leschelle, X., Bottin, H., & Chauvat, F. (1998). Targeted
deletion and mutational analysis of the essential (2Fe-2S) plant-like ferredoxin in Syn-
echocystis PCC6803 by plasmid shuffling. Molecular Microbiology , 28 , 813-821.
Rensing, C., & Grass, G. (2003). Escherichia coli mechanisms of copper homeostasis in a
changing environment. FEMS Microbiology Reviews , 27 (2-3), 197-213.
Rich, H. W., & Morel, F. M.M. (1990). Availability of well-defined iron colloids to the marine
diatom Thalassiosira weissflogii . Limnology and Oceanography , 35 , 652-662.
Richier, S., Macey, A. I., Pratt, N. J., Honey, D. J., Moore, C. M., & Bibby, T. S. (2012). Abun-
dances of iron-binding photosynthetic and nitrogen-fixing proteins of Trichodesmium
both in culture and in situ from the North Atlantic. PLoS One , 7 (5), e35571.
Rose, A. L., Salmon, T. P., Lukondeh, T., Neilan, B. A., & Waite, T. D. (2005). Use of super-
oxide as an electron shuttle for iron acquisition by the marine cyanobacterium Lyngbya
majuscula. Environmental Science and Technology , 39 , 3708-3715.
Rubin, M., Berman-Frank, I., & Shaked,Y. (2011). Dust- and mineral-iron utilization by the
marine dinitrogen-fixer Trichodesmium . Nature Geosciences , 4 , 529-534.
Rue, E. L., & Bruland, K. W. (1995). Complexation of iron(III) by natural organic ligands
in the Central North Pacific as determined by a new competitive ligand equili-
bration/adsorptive cathodic stripping voltammetric method. Marine Chemistry , 50 ,
117-138.
Rukhman, V., Anati, R., Melamed-Frank, M., & Adir, N. (2005). The MntC crystal structure
suggests that import of Mn2+ in cyanobacteria is redox controlled. Journal of Molecular
Biology , 348 (4), 961-969. 13.
Sandh, G., Ran, L., Xu, L., Sundqvist, G., Bulone,V., & Bergman, B. (2011). Comparative pro-
teomic profiles of the marine cyanobacterium Trichodesmium erythraeum IMS101 under
different nitrogen regimes. Proteomics , 11 (3), 406-419.
Sandmann, G., Peleato, M. L., Fillat, M. F., Lazaro, M. C., & Gomez-Moreno, C. (1990).
Consequences of the iron-dependent formation of ferredoxin and flavodoxin on photo-
synthesis and nitrogen fixation an Anabaena strains. Photosynthesis Research , 26 , 119-125.
Sandy, M., & Butler, A. (2009). Microbial iron acquisition: marine and terrestrial sidero-
phores. Chemistry Reviews , 109 , 4580-4595.
Schauer, K., Rodionov, D. A., & de Reuse, H. (2008). New substrates for TonB-depen-
dent transport: do we only see the 'tip of the iceberg'? Trends in Biochemical Sciences , 33 ,
330-338.
Schmidt, W. (1999). Mechanisms and regulation of reduction-based iron uptake in plants.
New Phytologist , 141 , 1-26.
Schröder, I., Johnson, E., & DeVries, S. (2003). Microbial ferric iron reductases. FEMS Micro-
biology Reviews , 27 , 427-447.
Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection and deter-
mination of siderophores. Analytical Biochemistry , 160 , 47-56.
Seki, A., Nakano, T., Takahashi, H., Matsumoto, K., Ikeuchi, M., & Tanaka, K. (2006). Light-
responsive transcriptional regulation of the suf promoters involved in cyanobacterium
Synechocystis sp. PCC 6803 Fe-S cluster biogenesis. Federation of European Biochemical
Society Letters , 580 , 5044-5048.
Search WWH ::




Custom Search