Geoscience Reference
In-Depth Information
Gravity field can also reveal or constrain the planet's internal structure. In the
recent decades, gravity remote sensing has given impressing results for the Earth
(GRACE, GOCE) and for the Moon (Gravity Recovery and Interior Laboratory
(GRAIL)). Space missions to Mercury, Venus, Saturn, Jupiter, Enceladus, Titan, and
Pluto would benefit from dedicated gravimetry or gradiometry sensors in addition
to other geodetic instruments to constrain internal structures of terrestrial planets.
Acknowledgements This work is partially sponsored by RFBR grants N 12-02-31184, 15-05-
02340, and N 13-05-00113. Paris observatory 2-month position was allocated for the first author.
The Ohio State University (OSU) component of the research was partially supported by grants
by NSF/IGFA Belmont Forum Project (Grant No. ICER-1342644) and by the Chinese Academy
of Sciences/SAFEA International Partnership Program for Creative Research Teams (Grant No.
KZZD-EW-TZ-05).
References
IPCC Fifth Assessment Report (2013) Climate Change 2013: The Physical Science Basis. http://
www.climatechange2013.org/
Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, Garcia-Herrera R (2011) The hot summer of
2010: redrawing the temperature record map of Europe. Science. doi:10.1126/science.1201224
Bettadpur S (2007) Level-2 gravity field product user handbook. ftp://podaac.jpl.nasa.gov/pub/
grace/doc/L2-UserHandbook_v2.3.pdf
Boergens E, Rangelova E, Sideris MG, Kusche J (2014) Assessment of the capabilities of the
temporal and spatiotemporal ICA method for geophysical signal separation in GRACE data.
JGR 119:4429-4447. doi:10.1002/2013JB010452
Case K, Kruizinga G, Sien-Chong Wu (2004) GRACE level 1B data product user handbook. ftp://
podaac.jpl.nasa.gov/pub/grace/doc/Handbook_1B_v1.2.pdf
Duan X, Guo J, Shum C, van der Wal W (2009) Towards an optimal scheme for removing
correlated errors in GRACE data. J Geodesy 83:1095-1106. doi:10.1007/s00190-009-0327-0
Guo J, Duan X, Shum C (2010) Non-isotropic filtering and leakage reduction for determin-
ing mass changes over land and ocean using GRACE data. Geophys J Int 181:290-302.
doi:10.1111/j.1365-246X.2010.04534.x
Frappart F, Papa F, Guntner A, Ramillien G, Prigent C, Rossow W, Bonnet M (2010) Interannual
variations of the terrestrial water storage in the Lower Ob' Basin from a multisatellite approach.
Hydrol Earth Syst Sci 14:2443-2453
Ghil M, Allen RM, Dettinger MD et al (2002) Advanced spectral methods for climatic time series.
Rev Geophys 40(1):3.1-3.41
Golyandina N,Nekrutkin V, Zhigljavskyet A (2001) Analysis of time series structure: SSA and
related techniques. Chapman & Hall/CRC, New York/London
Golyandina N (2004) Method “Caterpillar-SSA”: analysis of the time series. (In Russian) SPB.,
BBM
Han S-C, Shum CK, Jekeli Ch et al (2005) Non-isotropic filtering of GRACE temporal gravity for
geophysical signal enhancement. Geophys J Int 163(1):18-25
Jollife IT (2001) Principal component analysis. Springer, New York
Kenyon S et al (2007) Toward the next Earth gravitational model. In: SEG annual meeting,
San-Antonio. http://library.seg.org/doi/abs/10.1190/1.2792518
Klees R, Revtova E, Gunter B et al (2008) The design of an optimal filter for monthly GRACE
gravity models. Geophys J Int 175(5768):417-432
Search WWH ::




Custom Search