Biomedical Engineering Reference
In-Depth Information
intraperitoneal injections of w/o emulsions incorporating aprotinin. J Control Release
2001;71:87-98.
[342] Bjerregaard S, Soderberg I, Vermehren C, Frokjaer S. Formulation and evaluation of
release and swelling mechanism of a water-in-oil emulsion using factorial design. Int
J Pharm 1999;193:1-11.
[343] Jorgensen L, Vermehren C, Bjerregaard S, Frokjaer S. In vitro release of insulin aspart
incorporated into water-in-oil emulsions. J Drug Deliv Sci Tech 2004;14:455-9.
[344] Jorgensen L, Van de Weert M, Vermehren C, Bjerregaard S, Frokjaer S. Probing
structural changes of proteins incorporated into water-in-oil emulsions. J Pharm Sci
2004;93:1847-59.
[345] Kreuter J, Liehl E. Long-term studies of microencapsulated and adsorbed influenza vac-
cine nanoparticles. J Pharm Sci 1981;70:367-71.
[346] Vyas SP, Goyal AK, Khatri K. Mannosylated liposomes for targeted vaccines delivery.
Methods Mol Biol 2010;605:177-88.
[347] Coeshott C. Thermostable vaccines with improved stability at nonrefrigerated temperatures.
Endo Pharmaceuticals, Colorado, US. collaborators (1) Serum Institute of India-Pune,
(2) Beijing Hualton, Beijing, China, (3) Tufts University, Massachusetts, USA. http://
www.grandchallenges.org/IMPROVEVACCINES/CHALLENGES/HEATSTABLE/
Pages/Thermostable.aspx . Accessed May 2010.
[348] Davis SS. The use of soluble polymers and polymer microparticles to provide improved
vaccine responses after parenteral and mucosal delivery. Vaccine 2006;24:S7-S10.
[349] Bharali DJ, Mousa SA, Thanavala Y. Micro- and nanoparticle-based vaccines for hepa-
titis B. In: Michael RS, Yuri SS, editors. Immune mediated diseases (Part B). New York,
NY: Springer; 2007. p. 415-21.
[350] Standley SM, Kwon YK, Murthy N, Kunisawa J, Shastri N, Guillaudeu SJ, et al. Acid-
degradable particles for protein-based vaccines: enhanced survival rate for tumor-chal-
lenged mice using ovalbumin model. Bioconjug Chem 2004;15:1281-8.
[351] Bachelder EM, Beaudette TT, Broaders KE, Paramonov SE, Dashe J, Frchet JMJ. Acid-
degradable polyurethane particles for protein-based vaccines: biological evaluation and
in vitro analysis of particle degradation products. Mol Pharmaceutics 2008;5:876-84.
[352] Flanary S, Hoffman AS, Stayton PS. Antigen delivery with poly(propylacrylic acid)
conjugation enhances MHC-1 presentation and T-cell activation. Bioconjug Chem
2009;20:241-8.
[353] Jaganathan KS, Rao YUB, Singh P, Prabakaran D, Gupta S, Jain A, et al. Development
of single dose tetanus toxoid formulation based on polymeric microspheres; comparative
studies of poly(D,L-lactic- co -glycolic acid) versus chitosan microspheres. Int J Pharm
2005;294:23-32.
[354] Xing DKL, Crane DT, Bolgiano B, Corbel MJ, Jones C, Sesardic D. Physicochemical
and immunological studies on the stability of free and microspheres-encapsulated teta-
nus toxoid in vitro . Vaccine 1996;14:1205-13.
[355] Christensen D, Korsholm KS, Rosenkrands I, Lindenstrøm T, Andersen P, Agger EM.
Cationic liposomes as vaccine adjuvants. Expert Rev Vaccines 2007;6:785-96.
[356] Vickery BH. Biological actions of synthetic analogs of luteinizing hormone-releasing
hormone. In: Garzone PD, Colburn WA, Mokotoff M, editors. Pharmacokinetics and
pharmacodynamics: peptides, peptoids and proteins, vol. 3. New York: Harvey Whitney
Books; 1991. p. 41-49.
[357] Koch B, Lutz-Bucher B. Specific receptors for vasopressin in the pituitary gland: evi-
dence for down-regulation and desensitisation to adrenocorticotropin-releasing factors.
Endocrinology 1985;116:671-6.
Search WWH ::




Custom Search